4 research outputs found

    Studies on Core-Based Testing of System-on-Chips Using Functional Bus and Network-on-Chip Interconnects

    Get PDF
    The tests of a complex system such as a microprocessor-based system-onchip (SoC) or a network-on-chip (NoC) are difficult and expensive. In this thesis, we propose three core-based test methods that reuse the existing functional interconnects-a flat bus, hierarchical buses of multiprocessor SoC's (MPSoC), and a N oC-in order to avoid the silicon area cost of a dedicated test access mechanism (TAM). However, the use of functional interconnects as functional TAM's introduces several new problems. During tests, the interconnects-including the bus arbitrator, the bus bridges, and the NoC routers-operate in the functional mode to transport the test stimuli and responses, while the core under tests (CUT) operate in the test mode. Second, the test data is transported to the CUT through the functional bus, and not directly to the test port. Therefore, special core test wrappers that can provide the necessary control signals required by the different functional interconnect are proposed. We developed two types of wrappers, one buffer-based wrapper for the bus-based systems and another pair of complementary wrappers for the NoCbased systems. Using the core test wrappers, we propose test scheduling schemes for the three functionally different types of interconnects. The test scheduling scheme for a flat bus is developed based on an efficient packet scheduling scheme that minimizes both the buffer sizes and the test time under a power constraint. The schedulingscheme is then extended to take advantage of the hierarchical bus architecture of the MPSoC systems. The third test scheduling scheme based on the bandwidth sharing is developed specifically for the NoC-based systems. The test scheduling is performed under the objective of co-optimizing the wrapper area cost and the resulting test application time using the two complementary NoC wrappers. For each of the proposed methodology for the three types of SoC architec .. ture, we conducted a thorough experimental evaluation in order to verify their effectiveness compared to other methods

    The MANGO clockless network-on-chip: Concepts and implementation

    Get PDF

    Driving the Network-on-Chip Revolution to Remove the Interconnect Bottleneck in Nanoscale Multi-Processor Systems-on-Chip

    Get PDF
    The sustained demand for faster, more powerful chips has been met by the availability of chip manufacturing processes allowing for the integration of increasing numbers of computation units onto a single die. The resulting outcome, especially in the embedded domain, has often been called SYSTEM-ON-CHIP (SoC) or MULTI-PROCESSOR SYSTEM-ON-CHIP (MP-SoC). MPSoC design brings to the foreground a large number of challenges, one of the most prominent of which is the design of the chip interconnection. With a number of on-chip blocks presently ranging in the tens, and quickly approaching the hundreds, the novel issue of how to best provide on-chip communication resources is clearly felt. NETWORKS-ON-CHIPS (NoCs) are the most comprehensive and scalable answer to this design concern. By bringing large-scale networking concepts to the on-chip domain, they guarantee a structured answer to present and future communication requirements. The point-to-point connection and packet switching paradigms they involve are also of great help in minimizing wiring overhead and physical routing issues. However, as with any technology of recent inception, NoC design is still an evolving discipline. Several main areas of interest require deep investigation for NoCs to become viable solutions: • The design of the NoC architecture needs to strike the best tradeoff among performance, features and the tight area and power constraints of the onchip domain. • Simulation and verification infrastructure must be put in place to explore, validate and optimize the NoC performance. • NoCs offer a huge design space, thanks to their extreme customizability in terms of topology and architectural parameters. Design tools are needed to prune this space and pick the best solutions. • Even more so given their global, distributed nature, it is essential to evaluate the physical implementation of NoCs to evaluate their suitability for next-generation designs and their area and power costs. This dissertation performs a design space exploration of network-on-chip architectures, in order to point-out the trade-offs associated with the design of each individual network building blocks and with the design of network topology overall. The design space exploration is preceded by a comparative analysis of state-of-the-art interconnect fabrics with themselves and with early networkon- chip prototypes. The ultimate objective is to point out the key advantages that NoC realizations provide with respect to state-of-the-art communication infrastructures and to point out the challenges that lie ahead in order to make this new interconnect technology come true. Among these latter, technologyrelated challenges are emerging that call for dedicated design techniques at all levels of the design hierarchy. In particular, leakage power dissipation, containment of process variations and of their effects. The achievement of the above objectives was enabled by means of a NoC simulation environment for cycleaccurate modelling and simulation and by means of a back-end facility for the study of NoC physical implementation effects. Overall, all the results provided by this work have been validated on actual silicon layout

    A Holmes and Doyle Bibliography, Volume 9: All Formats—Combined Alphabetical Listing

    Get PDF
    This bibliography is a work in progress. It attempts to update Ronald B. De Waal’s comprehensive bibliography, The Universal Sherlock Holmes, but does not claim to be exhaustive in content. New works are continually discovered and added to this bibliography. Readers and researchers are invited to suggest additional content. This volume contains all listings in all formats, arranged alphabetically by author or main entry. In other words, it combines the listings from Volume 1 (Monograph and Serial Titles), Volume 3 (Periodical Articles), and Volume 7 (Audio/Visual Materials) into a comprehensive bibliography. (There may be additional materials included in this list, e.g. duplicate items and items not yet fully edited.) As in the other volumes, coverage of this material begins around 1994, the final year covered by De Waal's bibliography, but may not yet be totally up-to-date (given the ongoing nature of this bibliography). It is hoped that other titles will be added at a later date. At present, this bibliography includes 12,594 items
    corecore