11 research outputs found

    Trail Formation Using Large Swarms of Minimal Robots

    Get PDF

    Trail Formation using Large Swarms of Minimal Robots

    Get PDF

    Magnetic Trails: A Novel Artificial Pheromone for Swarm Robotics in Outdoor Environments

    Full text link
    [EN] Swarm robotics finds inspiration in nature to model behaviors, such as the use of pheromone principles. Pheromones provide an indirect and decentralized communication scheme that have shown positive experimental results. Real implementations of pheromones have suffered from slow sensors and have been limited to controlled environments. This paper presents a novel technology to implement real pheromones for swarm robotics in outdoor environments by using magnetized ferrofluids. A ferrofluid solution, with its deposition and magnetization system, is detailed. The proposed substance does not possess harmful materials for the environment and can be safely handled by humans. Validation demonstrates that the substance represents successfully pheromone characteristics of locality, diffusion and evaporation on several surfaces in outdoor conditions. Additionally, the experiments show an improvement over the chemical representation of pheromones by using magnetic substances and existing magnetometer sensor technologies, which provide better response rates and recovery periods than MOX chemical sensors. The present work represents a step toward swarm robotics experimentation in uncontrolled outdoor environments. In addition, the presented pheromone technology may be use by the broad area of swarm robotics for robot exploration and navigation.We would like to warmly thank Cindy Calderon-Arce. This paper was achieved thanks to her support and advice. Special thanks also to Research and Outreach Vice-Rectory at Costa Rica Institute of Technology (VIE, ITCR), for their support of PROE project (code VIE 1440036).Brenes-Torres, JC.; Blanes Noguera, F.; SimĂł Ten, JE. (2022). Magnetic Trails: A Novel Artificial Pheromone for Swarm Robotics in Outdoor Environments. Computation. 10(6):1-16. https://doi.org/10.3390/computation1006009811610

    Amorphous Computing

    Get PDF
    The goal of amorphous computing is to identify organizationalprinciples and create programming technologies for obtainingintentional, pre-specified behavior from the cooperation of myriadunreliable parts that are arranged in unknown, irregular, andtime-varying ways. The heightened relevance of amorphous computingtoday stems from the emergence of new technologies that could serve assubstrates for information processing systems of immense power atunprecedentedly low cost, if only we could master the challenge ofprogramming them. This document is a review of amorphous computing

    Genetic stigmergy: Framework and applications

    Get PDF
    Stigmergy has long been studied and recognized as an effective system for self-organization among social insects. Through the use of chemical agents known as pheromones, insect colonies are capable of complex collective behavior often beyond the scope of an individual agent. In an effort to develop human-made systems with the same robustness, scientists have created artificial analogues of pheromone-based stigmergy, but these systems often suffer from scalability and complexity issues due to the problems associated with mimicking the physics of pheromone diffusion. In this thesis, an alternative stigmergic framework called \u27Genetic Stigmergy\u27 is introduced. Using this framework, agents can indirectly share entire behavioral algorithms instead of pheromone traces that are limited in information content. The genetic constructs used in this framework allow for new avenues of research, including real-time evolution and adaptation of agents to complex environments. As a nascent test of its potential, experiments are performed using genetic stigmergy as an indirect communication framework for a simulated swarm of robots tasked with mapping an unknown environment. The robots are able to share their behavioral genes through environmentally distributed Radio-Frequency Identification cards. It was found that robots using a schema encouraging them to adopt lesser used behavioral genes (corresponding with novelty in exploration strategies) can generally cover more of an environment than agents who randomly switch their genes, but only if the environmental complexity is not too high. While the performance improvement is not statistically significant enough to clearly establish genetic stigmergy as a superior alternative to pheromonal-based artificial stigmergy, it is enough to warrant further research to develop its potential

    Energy-Efficient Indoor Search by Swarms of Simulated Flying Robots Without Global Information

    Get PDF
    Swarms of flying robots are a promising alternative to ground-based robots for search in indoor environments with advantages such as increased speed and the ability to fly above obstacles. However, there are numerous problems that must be surmounted including limitations in available sensory and on-board processing capabilities, and low flight endurance. This paper introduces a novel strategy to coordinate a swarm of flying robots for indoor exploration that significantly increases energy efficiency. The presented algorithm is fully distributed and scalable. It relies solely on local sensing and low-bandwidth communication, and does not require absolute positioning, localisation, or explicit world-models. It assumes that flying robots can temporarily attach to the ceiling, or land on the ground for efficient surveillance over extended periods of time. To further reduce energy consumption, the swarm is incrementally deployed by launching one robot at a time. Extensive simulation experiments demonstrate that increasing the time between consecutive robot launches significantly lowers energy consumption by reducing total swarm flight time, while also decreasing collision probability. As a trade-off, however, the search time increases with increased inter-launch periods. These effects are stronger in more complex environments. The proposed localisation-free strategy provides an energy efficient search behaviour adaptable to different environments or timing constraints

    Physical deployment of digital pheromones through RFID technology

    No full text

    Physical Deployment of Digital Pheromones Through RFID Technology

    No full text
    Pheromone-based multiagent interaction has received a growing attention in the past few years. Still, so far, the number of deployed systems exploiting pheromones for coordinating activities of distributed agents/robots situated in physical environments has been very limited. In this context, this paper presents a real-world, low- cost and general-purpose, implementation of pheromone interaction, realized by making use of RFID tags technology. Humans and robots can spread/sense pheromones by properly writing/reading RFID tags that are likely to populate our everyday environments. The proposed solution is tested and evaluated via an application for object-tracking, allowing robots and humans to find "forgot-somewhere" objects. The application works by letting objects spread digital pheromones trails that can be tracked afterwards. The paper presents several experiments to assess the effectiveness of our approach, outlines its limitations, and sketches further potential application scenarios

    Physical deployment of digital pheromones through RFID technology

    No full text
    We describe and evaluate a system for enforcing stigmergic interactions in the physical world by deploying pheromones in RFID tags
    corecore