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ABSTRACT
Recent advances in robotics allow for the creation of swarms that
work in large numbers. This typically requires low-cost robots with
restricted sensing and noisy motion. Developing swarm controllers
that are robust to such constraints could lead to applications ranging
from outdoor exploration to nanomedicine.

In particular, we demonstrate that a large swarm of minimal
robots, using only random motion and limited sensing capabilities,
can form trails from a source to an area of interest using a mecha-
nism inspired by diffusion-limited aggregation (DLA). We further
show that the nearest area of interest is selected, and that the formed
trails can avoid bypass. Validation is performed in simulation and
reality using a swarm of up to 100 robots.

CCS CONCEPTS
• Computing methodologies → Cooperation and coordina-
tion;

KEYWORDS
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1 INTRODUCTION
Large-scale (102 and higher) swarms of simple robots are becoming
a reality with applications ranging from environmental monitoring
to nanomedicine [2, 8]. Robots that work in such large numbers
are typically required to be cheap, and as a result minimal in terms
of sensing and actuation [17]. New swarm algorithms are needed
that are robust to noise and limited robot capabilities [5].

Specifically we look at the formation of trails between a source
and an area of interest using minimal robots. Such a trail could be
used to guide a crowd to an exit in an emergency situation, or lead
a search team to an area of interest, for example a chemical plume,
in a large outdoor area [7].

The proposed strategy takes inspiration from a diffusive growth
model, namely diffusion-limited aggregation (DLA) [20], to create
trails from a source to an area of interest. DLA has successfully
been used by [13] in simulation to create trees formed by robot
swarms leading to a charging station. Our work modifies DLA to
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only create one trail to a single area of interest rather than adopt a
tree-like structure between multiple points. We evaluate our control
mechanism in simulation and verify the qualitative properties using
a swarm of up to 100 real robots. We further show that trails are
formed to the nearest area of interest when two are present, and
that they are able to bypass obstacles. Rather than improve the
performance of trail formation in comparison to other algorithms,
our focus is on designing an algorithm that works with minimal
robots.

Trail formation has been a widely studied area of swarm robotics.
Most work in trail formation takes inspiration from the ability of
ants to create trails when foraging for food in nature [3]. Work by
Vaughan et al. studied the foraging behavior under the assumption
that robots have global positioning and global communication [18].
Systems that only use local information may rely on external bea-
cons. Beacons can either be existing entities in the environment, as
is the case with the pre-deployed sensors demonstrated by O’Hara
et al.[15], or be deployed dynamically by the robots [1]. Beacons
can also be used for indirect, so called stigmergic, communication
mimicking the use of pheromones by ants through the storage of
virtual pheromone information on the beacons [12].

Figure 1: Up to 100 Kilobot robots were used for swarm ex-
periments.

Another approach relies on the robots acting as the beacons them-
selves instead of relying on other types of agents or sensors for com-
munication. This can be achieved with robots dynamically switch-
ing between beacon and exploration behaviors [10], or through the
use of short-range communication to transmit a virtual pheromone
gradient [16]. Implementations of the former include the formation
of robotic chains for target localization [14, 19] or to order tasks [4],
and the creation of communication networks using flying robots
[9].

https://doi.org/10.1145/3297280.3297374
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Most described systems require robots to move in a directed fash-
ion, for example to follow pheromone trails. But deploying large
numbers of robots that can perform foraging tasks in large-scale
environments, in a cost effective manner, may require further con-
straints on the agent capabilities. It may be difficult to equip every
robot with a GPS for example, or calibrate their motion precisely.
Indeed, searching a large area, say a forest, may require tens of
thousands of tiny safe-by-design robots. Such scales may benefit
from inspiration from microsystems in nature, which typically rely
on diffusion and reaction of millions of molecules or cells to interact
over proportionally large areas [8].

2 TRAIL FORMATION ALGORITHM

Figure 2: Structures formed by DLA with a seed agent at the
center of the environment. Image by Paul Bourke.1

Diffusion Limited Aggregation (DLA) is a process by which
agents aggregate, forming structures that resemble tree branches
[11]. A seed agent is located at the center of a circular environ-
ment (or a sphere in a three dimensional case) and other agents
are released from the perimeter of the circle. These agents start
an unbiased random walk until they either leave the environment
or encounter the seed, in which case they stick to it. After a few
iterations, clusters of agents like the ones shown in Figure 2 will
begin to form.

Themechanism proposed in this paper takes inspiration from the
aggregation patterns of DLA to create a distributed control strategy
capable of creating trails from a source to an area of interest without
relying on directional control. We demonstrate that the stochastic
processes in systems like DLA can be governed through aggregation
parameters, and experiments designed in a way that can be useful
to locate areas of interest, even when the agents have extremely
limited capabilities.

We define both a source and an area of interest within a circular
open environment. The source is placed at the center of the circular
environment and the area of interest at a fixed distance. The area of
interest emits a signal within a limited range rinterest . New robotic
agents are released at a constant rate (rate = #robots

t ime ) from a source
in the center of the environment. Agents start moving randomly at
1http://paulbourke.net/fractals/dla/

Figure 3: Snapshots of a simulation on a circular environ-
ment with a source in the middle, and an area of interest lo-
cated within the environment. The circle on the top shows
the environment before the simulation starts. The image in
themiddle corresponds to a snapshot taken during runtime,
and the bottom image represents a snapshot taken at the end
of the simulation. A trail can be seen growing from the area
of interest to the source.
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a constant speed s through the environment. If one of them finds
itself within the transmission range rinterest of a signal, it will
stop moving (from here on referred as binding) and start emitting
a signal to robots within communication range rcommunication
for a limited amount of time t . Likewise, mobile robots that enter
the signal range of a robot also immobilise and emit a signal for a
limited amount of time.

The pseudocode for an implementation of the described mecha-
nism can be found in algorithm 1.

if not bound then
if sense signal then

set state to bound;
else

perform random walk;
end

else
stop motion;
if time smaller than maximum signal time then

emit signal;
end

end
Algorithm 1: Pseudocode for the trail formation algorithm.

3 SIMULATION
We model idealised robots as particles using GAMA2, a platform
for building spatially explicit multi-agent simulations designed by
Grignard et al. [6]. The advantage of this approach is that we can
easily test large-scale systems on the order of 103 agents. Dimen-
sionless parameters are used in these simulation, as the goal is to
improve our overall understanding of the proposed algorithm, and
not to design an algorithm for a specific robot. Parameters used
for the simulated scenarios, unless stated otherwise, are rate=1,
rinterest=20, s=65, rcommunication=20, t=50. Simulations are run
until a trail is formed, or up to maximum duration of 1000 timesteps.
For repeatability, the software and parameters used are provided at
http://hauertlab.com/software.

The intuition for how the trail is formed is as follows: Figure 4
shows how the diffusion time (defined as the number of timesteps
the agents are in a diffusion state and not bound to other agents
or the area of interest) of the agents becomes smaller as agents are
added at the source, i.e. agents released later during the simulation
will spend less time diffusing on average. This is due to the fact
that with the continuous release of new agents from the source, the
number of agents that bind closer to the source is higher than the
number of agents binding further away. The agents emitting signal
further away from the source will eventually stop emitting signal,
which will further increase the bias for binding close to the source.
This leads to the clustering of agents and the formation of the trail
visible in Figure 3. When the trail eventually reaches the source,
the high-number of robots emitting a signal there will cause any
new agent released to bind immediately, effectively blocking the
diffusion of newly generated agents. This blocking of the source,
together with the fact that agents only emit signal for a short period
of time, avoids the further development of new branches.
2https://github.com/gama-platform

Figure 4: Average number of timesteps (over 5 runs for the
same scenario) taken by agents to bind, as a function of their
release order from the source. Agents released later bind
quicker on average.

Figure 5: Average distance from the source (over 5 runs for
the same scenario) at which agents bind, as a function of
their release order from the source. Agents released later
bind nearer to the source on average.

Figure 5 shows the binding distance from the source averaged
over five runs with the setup from Figure 3. Again, we observe
that as time passes, and more agents are released, the agents start
binding closer to the source until they block the source. The distance
then remains flat to the end of the simulation.

Figure 6 shows the impact of the release rate on trail formation.
In particular, we increased the release rate by a factor of 30 and
the communication radius by factor of 1.3. Resulting simulations
show a more disperse distribution of agents in the environment
and no visible trail between the source and the area of interest. We
computed the root-mean-square error from a case with ideal perfor-
mance, a straight line from the source to the area of interest. With
the new parameters, the root-mean-square error is 204 as opposed
to 169 in the original simulation. The performance decrease is due
to the high density of agents present at the time the first agents
start binding. This allows for agents to rapidly bind to neighbors in
all directions without forming directional patterns. This suggests
that a key aspect to obtain efficient and highly directional trails is
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Figure 6: Impact of the release rate and communication range on trail formation. Scenarios with higher release rates and larger
communication ranges (A) form worse defined trails than scenarios with lower release rates and communication ranges (B).

Figure 7: Final snapshot of a simulation with two areas of in-
terest, with the area of interest on the right placed closer to
the source. The trail is formed to the nearest area of interest.

Figure 8: Final snapshot of a simulation with an obstacle be-
tween the source and the area of interest. The trail is suc-
cessfully formed to the source while bypassing the obstacle.

to control the release of agents and therefore the density of agents
at the time of the first binding event.

We looked at additional scenarios to test the robustness of the
demonstrated results and explore emergent features of the system.
The first is a scenario with two areas of interest in the environment,
one placed slightly closer to the source than the other. As we can
see in Figure 7, the trail will start growing from each area of interest
following the described mechanism. Because one of the trails is
closer to the source, the probability of one agent binding to it will be
higher and thus more agents will bind around that area of interest.
Even if agents start aggregating around both areas of interest, the
trail from the area of interest which is placed closer to the source
will grow faster until it reaches and blocks the source. This will
prevent the alternative trail starting at the opposite area of interest
from growing, as depicted in Figure 7. This property allows the
system to identify the closest area of interest without explicitly
obtaining any information about the distance. We also looked at
simulations where the two trails are situated at the same distance
from the source. In those cases, there is the possibility of creating
two trails, but small differences in the amount of agents initially
clustering around one of the areas of interest can lead to one of
the trails not being able to completely reach the source before the
release of agents at the source is blocked by the trail stemming
from the other area of interest.

We also explored the robustness of the system by placing an
obstacle between the source and the area of interest. In Figure 8,
we observe how the trail grows around the obstacle from the area
of interest back to the source. To obtain this behavior we increased
the speed of the agents by a factor of 1.5.

4 ROBOTIC VALIDATION
We validated the results obtained in simulation using a robotic
swarm (Figure 9). This validation is important because much of
the cited work [1, 10, 13, 14, 19] is based either exclusively on
simulations or on experiments with a small number of robots. We
used the Kilobot [17], a low-cost robotic platform designed to scale
to many-robot experiments. The Kilobot (shown in Figure 1) is
small (≈3cm in diameter) and moves with a maximum speed of 1
cm/s using two vibrating motors that allow it to turn and move
forward. It can also communicate omnidirectionally with nearby
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Figure 9: Trail formation at the end of the simulation (upper left), and at the end of the robot experiment for three trials. In
all cases, trails are formed to the area of interest.

Figure 10: Trail formation at the end of the simulation (upper left), and at the end of the robot experiment for three trials. Two
areas of interest are present in the environment, with one of them placed closer to the source. In all cases, trails are formed
to the nearest area of interest.
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Figure 11: Trail formation at the end of the simulation (upper left), and at the end of the experiment for three trials, when an
obstacle is placed along a direct line between the source and the area of interest. In all cases we can observe the adaptation of
the trail to circumvent the obstacle.

robots within 10cm using infrared light. Once programmed, the
robots are fully autonomous and do not rely on any external input
to operate. Experiments are performed on a 2m x 3m arena with
videos being captured through an overhead camera. Experiments
are stopped as soon as a trail has been formed.

To implement the rules described in algorithm 1 with the robotic
swarm, we need to make the robots diffuse in the environment. We
programmed each robot to randomly choose a turning direction
(left or right) with equal probability and then turn for a random
amount of seconds before going straight for another random time
interval. The robots are not identical and have differences in turning
speed and a direction bias when they go straight (it is not possible
to calibrate the two vibrating motors for highly precise straight
motion). These inaccuracies are present on an individual level and
do not cause a global bias on the entire swarm. The release rate
of the agents used in simulation has been replicated by manually
placing three robots every 2.5 min. Robots stop being released
when the trail has formed to the source, which typically takes more
than one hour. The precision of this method is also constrained by
human error while timing the intervals. The goal of the experiments
was not to obtain highly precise experimental conditions, but rather
observe if the overall behavior and qualitative properties of the
system showed in simulation could be replicated despite all the
experimental constraints. Applications in real world systems will
likely involve similar or greater constraints.

We performed the experiments with the robots three times for
each of the scenarios. In Figure 9 and Figure 11, we can see a
qualitative comparison of the results between the robot experiments

and the simulations. The robotic experiments showed that the three
main properties observed in simulation can be replicated with the
robots.

The first property shown in Figure 9 (top) is the ability of the
system to form trails. We can also observe the emergence of sec-
ondary branches among the trail, as in simulation. A video of this
behaviour can be found at https://youtu.be/qZXnq8wYCoU.

The second property is the capacity to find the closest area
of interest without actively sensing any information related to
distance. Figure 9(bottom) shows the robots forming a trail towards
the area of interest, which is situated closer to the source. This
result is also consistent with the results obtained in simulation.

Finally, the ability to form a trail around an obstacle was tested
with the robots, as shown in Figure 11 (bottom). As in simulation,
the robots are able to grow trails from the area of interest to the
source while bypassing the obstacle. The trail further seems to
closely follow the contour of the obstacle.

5 CONCLUSIONS AND FUTUREWORK
In this paper we presented a swarm strategy for simple robots
that only relies on diffusion and reaction to form trails between
two points. In addition to trail formation, the strategy seems to
favors the closest area of interest in the environment, and adapts
to obstacles. The simplicity of the approach lends itself to swarm
deployments in large numbers for applications ranging from ex-
ploring unknown environments, to nanomedicine. Future work
will focus on a thorough exploration of the parameter space of
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the presented algorithm to optimise speed and robustness of trail
formation.
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