109,192 research outputs found

    Low complexity physical layer security approach for 5G internet of things

    Get PDF
    Fifth-generation (5G) massive machine-type communication (mMTC) is expected to support the cellular adaptation of internet of things (IoT) applications for massive connectivity. Due to the massive access nature, IoT is prone to high interception probability and the use of conventional cryptographic techniques in these scenarios is not practical considering the limited computational capabilities of the IoT devices and their power budget. This calls for a lightweight physical layer security scheme which will provide security without much computational overhead and/or strengthen the existing security measures. Here a shift based physical layer security approach is proposed which will provide a low complexity security without much changes in baseline orthogonal frequency division multiple access (OFDMA) architecture as per the low power requirements of IoT by systematically rearranging the subcarriers. While the scheme is compatible with most fast Fourier transform (FFT) based waveform contenders which are being proposed in 5G especially in mMTC and ultra-reliable low latency communication (URLLC), it can also add an additional layer of security at physical layer to enhanced mobile broadband (eMBB)

    Securing Wireless Communications of the Internet of Things from the Physical Layer, An Overview

    Get PDF
    The security of the Internet of Things (IoT) is receiving considerable interest as the low power constraints and complexity features of many IoT devices are limiting the use of conventional cryptographic techniques. This article provides an overview of recent research efforts on alternative approaches for securing IoT wireless communications at the physical layer, specifically the key topics of key generation and physical layer encryption. These schemes can be implemented and are lightweight, and thus offer practical solutions for providing effective IoT wireless security. Future research to make IoT-based physical layer security more robust and pervasive is also covered

    The Role of Physical Layer Security in IoT: A Novel Perspective

    Get PDF
    This paper deals with the problem of securing the configuration phase of an Internet of Things (IoT) system. The main drawbacks of current approaches are the focus on specific techniques and methods, and the lack of a cross layer vision of the problem. In a smart environment, each IoT device has limited resources and is often battery operated with limited capabilities (e.g., no keyboard). As a consequence, network security must be carefully analyzed in order to prevent security and privacy issues. In this paper, we will analyze the IoT threats, we will propose a security framework for the device initialization and we will show how physical layer security can effectively boost the security of IoT systems

    Physical Layer Security for the Internet of Things: Authentication and Key Generation

    Get PDF
    A low-complexity, yet secure framework is proposed for protecting the Internet of Things (IoT) and for achieving both authentication and secure communication. In particular, the slight random difference among transceivers is extracted for creating a unique radio frequency fingerprint and for ascertaining the unique user identity. The wireless channel between any two users is a perfect source of randomness and can be exploited as cryptographic keys. This can be applied to the physical layer of the communications protocol stack. This article reviews these protocols and shows how they can be integrated to provide a complete IoT security framework. We conclude by outlining the future challenges in applying these compelling physical layer security techniques to the IoT.<br/

    Reconfigurable Intelligent Surface for Physical Layer Security in 6G-IoT: Designs, Issues, and Advances

    Full text link
    Sixth-generation (6G) networks pose substantial security risks because confidential information is transmitted over wireless channels with a broadcast nature, and various attack vectors emerge. Physical layer security (PLS) exploits the dynamic characteristics of wireless environments to provide secure communications, while reconfigurable intelligent surfaces (RISs) can facilitate PLS by controlling wireless transmissions. With RIS-aided PLS, a lightweight security solution can be designed for low-end Internet of Things (IoT) devices, depending on the design scenario and communication objective. This article discusses RIS-aided PLS designs for 6G-IoT networks against eavesdropping and jamming attacks. The theoretical background and literature review of RIS-aided PLS are discussed, and design solutions related to resource allocation, beamforming, artificial noise, and cooperative communication are presented. We provide simulation results to show the effectiveness of RIS in terms of PLS. In addition, we examine the research issues and possible solutions for RIS modeling, channel modeling and estimation, optimization, and machine learning. Finally, we discuss recent advances, including STAR-RIS and malicious RIS.Comment: Accepted for IEEE Internet of Things Journa

    Developed security and privacy algorithms for cyber physical system

    Get PDF
    Cyber-physical system (CPS) is a modern technology in the cyber world, and it integrates with wireless sensor network (WSN). This system is widely used in many applications such as a smart city, greenhouse, healthcare, and power grid. Therefore, the data security and integrity are necessary to ensure the highest level of protection and performance for such systems. In this paper, two sides security system for cyber-physical level is proposed to obtain security, privacy, and integrity. The first side is applied the secure sockets layer (SSL)/transport layer security (TLS) encryption protocol with the internet of things (IoT) based message queuing telemetry transport (MQTT) protocol to secure the connection and encrypt the data exchange between the system's parties. The second side proposes an algorithm to detect and prevent a denial of service (DoS) attack (hypertext transfer protocol (HTTP) post request) on a Web server. The experiment results show the superior performance of the proposed method to secure the CPS by detecting and preventing the cyber-attacks, which infect the Web servers. They also prove the implementation of security, privacy and integrity aspects on the CPS

    A survey of IoT security based on a layered architecture of sensing and data analysis

    Get PDF
    The Internet of Things (IoT) is leading today’s digital transformation. Relying on a combination of technologies, protocols, and devices such as wireless sensors and newly developed wearable and implanted sensors, IoT is changing every aspect of daily life, especially recent applications in digital healthcare. IoT incorporates various kinds of hardware, communication protocols, and services. This IoT diversity can be viewed as a double-edged sword that provides comfort to users but can lead also to a large number of security threats and attacks. In this survey paper, a new compacted and optimized architecture for IoT is proposed based on five layers. Likewise, we propose a new classification of security threats and attacks based on new IoT architecture. The IoT architecture involves a physical perception layer, a network and protocol layer, a transport layer, an application layer, and a data and cloud services layer. First, the physical sensing layer incorporates the basic hardware used by IoT. Second, we highlight the various network and protocol technologies employed by IoT, and review the security threats and solutions. Transport protocols are exhibited and the security threats against them are discussed while providing common solutions. Then, the application layer involves application protocols and lightweight encryption algorithms for IoT. Finally, in the data and cloud services layer, the main important security features of IoT cloud platforms are addressed, involving confidentiality, integrity, authorization, authentication, and encryption protocols. The paper is concluded by presenting the open research issues and future directions towards securing IoT, including the lack of standardized lightweight encryption algorithms, the use of machine-learning algorithms to enhance security and the related challenges, the use of Blockchain to address security challenges in IoT, and the implications of IoT deployment in 5G and beyond
    • …
    corecore