891 research outputs found

    POPE: Partial Order Preserving Encoding

    Get PDF
    Recently there has been much interest in performing search queries over encrypted data to enable functionality while protecting sensitive data. One particularly efficient mechanism for executing such queries is order-preserving encryption/encoding (OPE) which results in ciphertexts that preserve the relative order of the underlying plaintexts thus allowing range and comparison queries to be performed directly on ciphertexts. In this paper, we propose an alternative approach to range queries over encrypted data that is optimized to support insert-heavy workloads as are common in "big data" applications while still maintaining search functionality and achieving stronger security. Specifically, we propose a new primitive called partial order preserving encoding (POPE) that achieves ideal OPE security with frequency hiding and also leaves a sizable fraction of the data pairwise incomparable. Using only O(1) persistent and O(nϵ)O(n^\epsilon) non-persistent client storage for 0<ϵ<10<\epsilon<1, our POPE scheme provides extremely fast batch insertion consisting of a single round, and efficient search with O(1) amortized cost for up to O(n1ϵ)O(n^{1-\epsilon}) search queries. This improved security and performance makes our scheme better suited for today's insert-heavy databases.Comment: Appears in ACM CCS 2016 Proceeding

    The Case for Quantum Key Distribution

    Get PDF
    Quantum key distribution (QKD) promises secure key agreement by using quantum mechanical systems. We argue that QKD will be an important part of future cryptographic infrastructures. It can provide long-term confidentiality for encrypted information without reliance on computational assumptions. Although QKD still requires authentication to prevent man-in-the-middle attacks, it can make use of either information-theoretically secure symmetric key authentication or computationally secure public key authentication: even when using public key authentication, we argue that QKD still offers stronger security than classical key agreement.Comment: 12 pages, 1 figure; to appear in proceedings of QuantumComm 2009 Workshop on Quantum and Classical Information Security; version 2 minor content revision

    An In-Depth Analysis on Efficiency and Vulnerabilities on a Cloud-Based Searchable Symmetric Encryption Solution

    Get PDF
    Searchable Symmetric Encryption (SSE) has come to be as an integral cryptographic approach in a world where digital privacy is essential. The capacity to search through encrypted data whilst maintaining its integrity meets the most important demand for security and confidentiality in a society that is increasingly dependent on cloud-based services and data storage. SSE offers efficient processing of queries over encrypted datasets, allowing entities to comply with data privacy rules while preserving database usability. Our research goes into this need, concentrating on the development and thorough testing of an SSE system based on Curtmola’s architecture and employing Advanced Encryption Standard (AES) in Cypher Block Chaining (CBC) mode. A primary goal of the research is to conduct a thorough evaluation of the security and performance of the system. In order to assess search performance, a variety of database settings were extensively tested, and the system's security was tested by simulating intricate threat scenarios such as count attacks and leakage abuse. The efficiency of operation and cryptographic robustness of the SSE system are critically examined by these reviews

    Chameleon: A Secure Cloud-Enabled and Queryable System with Elastic Properties

    Get PDF
    There are two dominant themes that have become increasingly more important in our technological society. First, the recurrent use of cloud-based solutions which provide infrastructures, computation platforms and storage as services. Secondly, the use of applicational large logs for analytics and operational monitoring in critical systems. Moreover, auditing activities, debugging of applications and inspection of events generated by errors or potential unexpected operations - including those generated as alerts by intrusion detection systems - are common situations where extensive logs must be analyzed, and easy access is required. More often than not, a part of the generated logs can be deemed as sensitive, requiring a privacy-enhancing and queryable solution. In this dissertation, our main goal is to propose a novel approach of storing encrypted critical data in an elastic and scalable cloud-based storage, focusing on handling JSONbased ciphered documents. To this end, we make use of Searchable and Homomorphic Encryption methods to allow operations on the ciphered documents. Additionally, our solution allows for the user to be near oblivious to our system’s internals, providing transparency while in use. The achieved end goal is a unified middleware system capable of providing improved system usability, privacy, and rich querying over the data. This previously mentioned objective is addressed while maintaining server-side auditable logs, allowing for searchable capabilities by the log owner or authorized users, with integrity and authenticity proofs. Our proposed solution, named Chameleon, provides rich querying facilities on ciphered data - including conjunctive keyword, ordering correlation and boolean queries - while supporting field searching and nested aggregations. The aforementioned operations allow our solution to provide data analytics upon ciphered JSON documents, using Elasticsearch as our storage and search engine.O uso recorrente de soluções baseadas em nuvem tornaram-se cada vez mais importantes na nossa sociedade. Tais soluções fornecem infraestruturas, computação e armazenamento como serviços, para alem do uso de logs volumosos de sistemas e aplicações para análise e monitoramento operacional em sistemas críticos. Atividades de auditoria, debugging de aplicações ou inspeção de eventos gerados por erros ou possíveis operações inesperadas - incluindo alertas por sistemas de detecção de intrusão - são situações comuns onde logs extensos devem ser analisados com facilidade. Frequentemente, parte dos logs gerados podem ser considerados confidenciais, exigindo uma solução que permite manter a confidencialidades dos dados durante procuras. Nesta dissertação, o principal objetivo é propor uma nova abordagem de armazenar logs críticos num armazenamento elástico e escalável baseado na cloud. A solução proposta suporta documentos JSON encriptados, fazendo uso de Searchable Encryption e métodos de criptografia homomórfica com provas de integridade e autenticação. O objetivo alcançado é um sistema de middleware unificado capaz de fornecer privacidade, integridade e autenticidade, mantendo registos auditáveis do lado do servidor e permitindo pesquisas pelo proprietário dos logs ou usuários autorizados. A solução proposta, Chameleon, visa fornecer recursos de consulta atuando em cima de dados cifrados - incluindo queries conjuntivas, de ordenação e booleanas - suportando pesquisas de campo e agregações aninhadas. As operações suportadas permitem à nossa solução suportar data analytics sobre documentos JSON cifrados, utilizando o Elasticsearch como armazenamento e motor de busca
    corecore