349 research outputs found

    A Survey of Word Reordering in Statistical Machine Translation: Computational Models and Language Phenomena

    Get PDF
    Word reordering is one of the most difficult aspects of statistical machine translation (SMT), and an important factor of its quality and efficiency. Despite the vast amount of research published to date, the interest of the community in this problem has not decreased, and no single method appears to be strongly dominant across language pairs. Instead, the choice of the optimal approach for a new translation task still seems to be mostly driven by empirical trials. To orientate the reader in this vast and complex research area, we present a comprehensive survey of word reordering viewed as a statistical modeling challenge and as a natural language phenomenon. The survey describes in detail how word reordering is modeled within different string-based and tree-based SMT frameworks and as a stand-alone task, including systematic overviews of the literature in advanced reordering modeling. We then question why some approaches are more successful than others in different language pairs. We argue that, besides measuring the amount of reordering, it is important to understand which kinds of reordering occur in a given language pair. To this end, we conduct a qualitative analysis of word reordering phenomena in a diverse sample of language pairs, based on a large collection of linguistic knowledge. Empirical results in the SMT literature are shown to support the hypothesis that a few linguistic facts can be very useful to anticipate the reordering characteristics of a language pair and to select the SMT framework that best suits them.Comment: 44 pages, to appear in Computational Linguistic

    A syntactified direct translation model with linear-time decoding

    Get PDF
    Recent syntactic extensions of statistical translation models work with a synchronous context-free or tree-substitution grammar extracted from an automatically parsed parallel corpus. The decoders accompanying these extensions typically exceed quadratic time complexity. This paper extends the Direct Translation Model 2 (DTM2) with syntax while maintaining linear-time decoding. We employ a linear-time parsing algorithm based on an eager, incremental interpretation of Combinatory Categorial Grammar (CCG). As every input word is processed, the local parsing decisions resolve ambiguity eagerly, by selecting a single supertag–operator pair for extending the dependency parse incrementally. Alongside translation features extracted from the derived parse tree, we explore syntactic features extracted from the incremental derivation process. Our empirical experiments show that our model significantly outperforms the state-of-the art DTM2 system

    Translating Phrases in Neural Machine Translation

    Full text link
    Phrases play an important role in natural language understanding and machine translation (Sag et al., 2002; Villavicencio et al., 2005). However, it is difficult to integrate them into current neural machine translation (NMT) which reads and generates sentences word by word. In this work, we propose a method to translate phrases in NMT by integrating a phrase memory storing target phrases from a phrase-based statistical machine translation (SMT) system into the encoder-decoder architecture of NMT. At each decoding step, the phrase memory is first re-written by the SMT model, which dynamically generates relevant target phrases with contextual information provided by the NMT model. Then the proposed model reads the phrase memory to make probability estimations for all phrases in the phrase memory. If phrase generation is carried on, the NMT decoder selects an appropriate phrase from the memory to perform phrase translation and updates its decoding state by consuming the words in the selected phrase. Otherwise, the NMT decoder generates a word from the vocabulary as the general NMT decoder does. Experiment results on the Chinese to English translation show that the proposed model achieves significant improvements over the baseline on various test sets.Comment: Accepted by EMNLP 201

    A Framework for Effectively Integrating Hard and Soft Syntactic Rules into Phrase Based Translation

    Get PDF
    PACLIC 23 / City University of Hong Kong / 3-5 December 200

    How much hybridisation does machine translation need?

    Get PDF
    This is the peer reviewed version of the following article: [Costa-jussà, M. R. (2015), How much hybridization does machine translation Need?. J Assn Inf Sci Tec, 66: 2160–2165. doi:10.1002/asi.23517], which has been published in final form at [10.1002/asi.23517]. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.Rule-based and corpus-based machine translation (MT)have coexisted for more than 20 years. Recently, bound-aries between the two paradigms have narrowed andhybrid approaches are gaining interest from bothacademia and businesses. However, since hybridapproaches involve the multidisciplinary interaction oflinguists, computer scientists, engineers, and informa-tion specialists, understandably a number of issuesexist.While statistical methods currently dominate researchwork in MT, most commercial MT systems are techni-cally hybrid systems. The research community shouldinvestigate the bene¿ts and questions surrounding thehybridization of MT systems more actively. This paperdiscusses various issues related to hybrid MT includingits origins, architectures, achievements, and frustra-tions experienced in the community. It can be said thatboth rule-based and corpus- based MT systems havebene¿ted from hybridization when effectively integrated.In fact, many of the current rule/corpus-based MTapproaches are already hybridized since they do includestatistics/rules at some point.Peer ReviewedPostprint (author's final draft

    Using Wordnet to improve reordering in hierarchical phrase-based statistical machine translation

    Get PDF
    We propose the use of WordNet synsets in a syntax-based reordering model for hierarchical statistical machine translation (HPB-SMT) to enable the model to generalize to phrases not seen in the training data but that have equivalent meaning. We detail our methodology to incorporate synsets’ knowledge in the reordering model and evaluate the resulting WordNetenhanced SMT systems on the English-toFarsi language direction. The inclusion of synsets leads to the best BLEU score, outperforming the baseline (standard HPBSMT) by 0.6 points absolute

    Getting Past the Language Gap: Innovations in Machine Translation

    Get PDF
    In this chapter, we will be reviewing state of the art machine translation systems, and will discuss innovative methods for machine translation, highlighting the most promising techniques and applications. Machine translation (MT) has benefited from a revitalization in the last 10 years or so, after a period of relatively slow activity. In 2005 the field received a jumpstart when a powerful complete experimental package for building MT systems from scratch became freely available as a result of the unified efforts of the MOSES international consortium. Around the same time, hierarchical methods had been introduced by Chinese researchers, which allowed the introduction and use of syntactic information in translation modeling. Furthermore, the advances in the related field of computational linguistics, making off-the-shelf taggers and parsers readily available, helped give MT an additional boost. Yet there is still more progress to be made. For example, MT will be enhanced greatly when both syntax and semantics are on board: this still presents a major challenge though many advanced research groups are currently pursuing ways to meet this challenge head-on. The next generation of MT will consist of a collection of hybrid systems. It also augurs well for the mobile environment, as we look forward to more advanced and improved technologies that enable the working of Speech-To-Speech machine translation on hand-held devices, i.e. speech recognition and speech synthesis. We review all of these developments and point out in the final section some of the most promising research avenues for the future of MT
    corecore