10 research outputs found

    WeatherNet: Recognising weather and visual conditions from street-level images using deep residual learning

    Get PDF
    Extracting information related to weather and visual conditions at a given time and space is indispensable for scene awareness, which strongly impacts our behaviours, from simply walking in a city to riding a bike, driving a car, or autonomous drive-assistance. Despite the significance of this subject, it is still not been fully addressed by the machine intelligence relying on deep learning and computer vision to detect the multi-labels of weather and visual conditions with a unified method that can be easily used for practice. What has been achieved to-date is rather sectorial models that address limited number of labels that do not cover the wide spectrum of weather and visual conditions. Nonetheless, weather and visual conditions are often addressed individually. In this paper, we introduce a novel framework to automatically extract this information from street-level images relying on deep learning and computer vision using a unified method without any pre-defined constraints in the processed images. A pipeline of four deep Convolutional Neural Network (CNN) models, so-called the WeatherNet, is trained, relying on residual learning using ResNet50 architecture, to extract various weather and visual conditions such as Dawn/dusk, day and night for time detection, and glare for lighting conditions, and clear, rainy, snowy, and foggy for weather conditions. The WeatherNet shows strong performance in extracting this information from user-defined images or video streams that can be used not limited to: autonomous vehicles and drive-assistance systems, tracking behaviours, safety-related research, or even for better understanding cities through images for policy-makers.Comment: 11 pages, 8 figure

    制約付き回帰に基づく照度差ステレオ

    Get PDF
    学位の種別: 課程博士審査委員会委員 : (主査)東京大学准教授 山﨑 俊彦, 東京大学教授, 相澤 清晴, 東京大学教授 池内 克史, 東京大学教授 佐藤 真一, 東京大学教授 佐藤 洋一, 東京大学教授 苗村 健University of Tokyo(東京大学

    Photometric stereo and weather estimation using internet images

    No full text
    10.1109/CVPRW.2009.52067322009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, CVPR Workshops 20091850-185

    Photometric Reconstruction from Images: New Scenarios and Approaches for Uncontrolled Input Data

    Get PDF
    The changes in surface shading caused by varying illumination constitute an important cue to discern fine details and recognize the shape of textureless objects. Humans perform this task subconsciously, but it is challenging for a computer because several variables are unknown and intermix in the light distribution that actually reaches the eye or camera. In this work, we study algorithms and techniques to automatically recover the surface orientation and reflectance properties from multiple images of a scene. Photometric reconstruction techniques have been investigated for decades but are still restricted to industrial applications and research laboratories. Making these techniques work on more general, uncontrolled input without specialized capture setups has to be the next step but is not yet solved. We explore the current limits of photometric shape recovery in terms of input data and propose ways to overcome some of its restrictions. Many approaches, especially for non-Lambertian surfaces, rely on the illumination and the radiometric response function of the camera to be known. The accuracy such algorithms are able to achieve depends a lot on the quality of an a priori calibration of these parameters. We propose two techniques to estimate the position of a point light source, experimentally compare their performance with the commonly employed method, and draw conclusions which one to use in practice. We also discuss how well an absolute radiometric calibration can be performed on uncontrolled consumer images and show the application of a simple radiometric model to re-create night-time impressions from color images. A focus of this thesis is on Internet images which are an increasingly important source of data for computer vision and graphics applications. Concerning reconstructions in this setting we present novel approaches that are able to recover surface orientation from Internet webcam images. We explore two different strategies to overcome the challenges posed by this kind of input data. One technique exploits orientation consistency and matches appearance profiles on the target with a partial reconstruction of the scene. This avoids an explicit light calibration and works for any reflectance that is observed on the partial reference geometry. The other technique employs an outdoor lighting model and reflectance properties represented as parametric basis materials. It yields a richer scene representation consisting of shape and reflectance. This is very useful for the simulation of new impressions or editing operations, e.g. relighting. The proposed approach is the first that achieves such a reconstruction on webcam data. Both presentations are accompanied by evaluations on synthetic and real-world data showing qualitative and quantitative results. We also present a reconstruction approach for more controlled data in terms of the target scene. It relies on a reference object to relax a constraint common to many photometric stereo approaches: the fixed camera assumption. The proposed technique allows the camera and light source to vary freely in each image. It again avoids a light calibration step and can be applied to non-Lambertian surfaces. In summary, this thesis contributes to the calibration and to the reconstruction aspects of photometric techniques. We overcome challenges in both controlled and uncontrolled settings, with a focus on the latter. All proposed approaches are shown to operate also on non-Lambertian objects
    corecore