39,414 research outputs found

    BGS Sigma 2012 open source user guide

    Get PDF
    The British Geological Survey began developing digital field mapping systems in 1989. However, it was apparent that the commercially available hardware was not suitable at that time. In 2001, we revisited the topic under the System for Integrated Geoscience Mapping (SIGMA) programme. By 2003, BGS had developed a PDA (personal digital assistant) field system, which was superseded in 2005, when we began deploying a beta system on rugged Tablet PCs. The Tablet PC system, which we called BGS•SIGMAmobile was used by BGS in mapping projects across the UK as well as overseas. It first became available in Open Source form, in June 2009 via the BGS website, www.bgs.ac.uk, under an agreement which stipulates that updates and modifications must be supplied to BGS in order to stimulate further developments. In 2011/2012, BGS•SIGMAmobile was rewritten in .NET and combined with our office based mapping software BGS•SIGMAdesktop within ArcGIS 10.x to create BGS•SIGMA 2012. It is envisaged that future releases will be made available from the BGS website incorporating new modules, modifications and upgrades supplied by BGS and external users of the system. This document has been written to guide users through the installation and use of BGS•SIGMA 2012 (mobile and desktop), which is the third free release. We are happy to receive feedback and modifications emailed to [email protected]

    Extrinsic electromagnetic chirality in all-photodesigned one-dimensional THz metamaterials

    Full text link
    We suggest that all-photodesigned metamaterials, sub-wavelength custom patterns of photo-excited carriers on a semiconductor, can display an exotic extrinsic electromagnetic chirality in terahertz (THz) frequency range. We consider a photo-induced pattern exhibiting 1D geometrical chirality, i.e. its mirror image can not be superposed onto itself by translations without rotations and, in the long wavelength limit, we evaluate its bianisotropic response. The photo-induced extrinsic chirality turns out to be fully reconfigurable by recasting the optical illumination which supports the photo-excited carriers. The all-photodesigning technique represents a feasible, easy and powerful method for achieving effective matter functionalization and, combined with the chiral asymmetry, it could be the platform for a new generation of reconfigurable devices for THz wave polarization manipulation.Comment: 11 page
    • …
    corecore