187 research outputs found

    Time-Contrastive Learning Based Deep Bottleneck Features for Text-Dependent Speaker Verification

    Get PDF
    There are a number of studies about extraction of bottleneck (BN) features from deep neural networks (DNNs)trained to discriminate speakers, pass-phrases and triphone states for improving the performance of text-dependent speaker verification (TD-SV). However, a moderate success has been achieved. A recent study [1] presented a time contrastive learning (TCL) concept to explore the non-stationarity of brain signals for classification of brain states. Speech signals have similar non-stationarity property, and TCL further has the advantage of having no need for labeled data. We therefore present a TCL based BN feature extraction method. The method uniformly partitions each speech utterance in a training dataset into a predefined number of multi-frame segments. Each segment in an utterance corresponds to one class, and class labels are shared across utterances. DNNs are then trained to discriminate all speech frames among the classes to exploit the temporal structure of speech. In addition, we propose a segment-based unsupervised clustering algorithm to re-assign class labels to the segments. TD-SV experiments were conducted on the RedDots challenge database. The TCL-DNNs were trained using speech data of fixed pass-phrases that were excluded from the TD-SV evaluation set, so the learned features can be considered phrase-independent. We compare the performance of the proposed TCL bottleneck (BN) feature with those of short-time cepstral features and BN features extracted from DNNs discriminating speakers, pass-phrases, speaker+pass-phrase, as well as monophones whose labels and boundaries are generated by three different automatic speech recognition (ASR) systems. Experimental results show that the proposed TCL-BN outperforms cepstral features and speaker+pass-phrase discriminant BN features, and its performance is on par with those of ASR derived BN features. Moreover,....Comment: Copyright (c) 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other work

    Analyzing Hidden Representations in End-to-End Automatic Speech Recognition Systems

    Full text link
    Neural models have become ubiquitous in automatic speech recognition systems. While neural networks are typically used as acoustic models in more complex systems, recent studies have explored end-to-end speech recognition systems based on neural networks, which can be trained to directly predict text from input acoustic features. Although such systems are conceptually elegant and simpler than traditional systems, it is less obvious how to interpret the trained models. In this work, we analyze the speech representations learned by a deep end-to-end model that is based on convolutional and recurrent layers, and trained with a connectionist temporal classification (CTC) loss. We use a pre-trained model to generate frame-level features which are given to a classifier that is trained on frame classification into phones. We evaluate representations from different layers of the deep model and compare their quality for predicting phone labels. Our experiments shed light on important aspects of the end-to-end model such as layer depth, model complexity, and other design choices.Comment: NIPS 201

    Acoustic characterization of speech rhythm: going beyond metrics with recurrent neural networks

    Full text link
    Languages have long been described according to their perceived rhythmic attributes. The associated typologies are of interest in psycholinguistics as they partly predict newborns' abilities to discriminate between languages and provide insights into how adult listeners process non-native languages. Despite the relative success of rhythm metrics in supporting the existence of linguistic rhythmic classes, quantitative studies have yet to capture the full complexity of temporal regularities associated with speech rhythm. We argue that deep learning offers a powerful pattern-recognition approach to advance the characterization of the acoustic bases of speech rhythm. To explore this hypothesis, we trained a medium-sized recurrent neural network on a language identification task over a large database of speech recordings in 21 languages. The network had access to the amplitude envelopes and a variable identifying the voiced segments, assuming that this signal would poorly convey phonetic information but preserve prosodic features. The network was able to identify the language of 10-second recordings in 40% of the cases, and the language was in the top-3 guesses in two-thirds of the cases. Visualization methods show that representations built from the network activations are consistent with speech rhythm typologies, although the resulting maps are more complex than two separated clusters between stress and syllable-timed languages. We further analyzed the model by identifying correlations between network activations and known speech rhythm metrics. The findings illustrate the potential of deep learning tools to advance our understanding of speech rhythm through the identification and exploration of linguistically relevant acoustic feature spaces.Comment: 15 pages, 7 figure

    MULTIVARIATE MODELING OF COGNITIVE PERFORMANCE AND CATEGORICAL PERCEPTION FROM NEUROIMAGING DATA

    Get PDF
    State-of-the-art cognitive-neuroscience mainly uses hypothesis-driven statistical testing to characterize and model neural disorders and diseases. While such techniques have proven to be powerful in understanding diseases and disorders, they are inadequate in explaining causal relationships as well as individuality and variations. In this study, we proposed multivariate data-driven approaches for predictive modeling of cognitive events and disorders. We developed network descriptions of both structural and functional connectivities that are critical in multivariate modeling of cognitive performance (i.e., fluency, attention, and working memory) and categorical perceptions (i.e., emotion, speech perception). We also performed dynamic network analysis on brain connectivity measures to determine the role of different functional areas in relation to categorical perceptions and cognitive events. Our empirical studies of structural connectivity were performed using Diffusion Tensor Imaging (DTI). The main objective was to discover the role of structural connectivity in selecting clinically interpretable features that are consistent over a large range of model parameters in classifying cognitive performances in relation to Acute Lymphoblastic Leukemia (ALL). The proposed approach substantially improved accuracy (13% - 26%) over existing models and also selected a relevant, small subset of features that were verified by domain experts. In summary, the proposed approach produced interpretable models with better generalization.Functional connectivity is related to similar patterns of activation in different brain regions regardless of the apparent physical connectedness of the regions. The proposed data-driven approach to the source localized electroencephalogram (EEG) data includes an array of tools such as graph mining, feature selection, and multivariate analysis to determine the functional connectivity in categorical perceptions. We used the network description to correctly classify listeners behavioral responses with an accuracy over 92% on 35 participants. State-of-the-art network description of human brain assumes static connectivities. However, brain networks in relation to perception and cognition are complex and dynamic. Analysis of transient functional networks with spatiotemporal variations to understand cognitive functions remains challenging. One of the critical missing links is the lack of sophisticated methodologies in understanding dynamics neural activity patterns. We proposed a clustering-based complex dynamic network analysis on source localized EEG data to understand the commonality and differences in gender-specific emotion processing. Besides, we also adopted Bayesian nonparametric framework for segmentation neural activity with a finite number of microstates. This approach enabled us to find the default network and transient pattern of the underlying neural mechanism in relation to categorical perception. In summary, multivariate and dynamic network analysis methods developed in this dissertation to analyze structural and functional connectivities will have a far-reaching impact on computational neuroscience to identify meaningful changes in spatiotemporal brain activities
    corecore