9,483 research outputs found

    Influences on Throughput and Latency in Stream Programs

    Get PDF
    Vu Thien Nga Nguyen and Raimund Kirner, 'Influences on Throughput and Latency in Stream Programs' paper presented at the 2nd Workshop on Feedback-Directed Compiler Optimization for Multi-Core Architectures. Berlin, Germany. 22 January 2013Stream programming is a promising approach to execute programs on parallel hardware such as multi-core systems. It allows to reuse sequential code at component level and to extend such code with concurrency-handling at the communication level. In this paper we investigate in the performance of stream programs in terms of throughput and latency. We identify factors that affect these performance metrics and propose an efficient scheduling approach to obtain the maximal performance

    An expert system for satellite and instrument data anomaly and fault isolation

    Get PDF
    A prototype Generic Payload Operations Control System (GPOCC) is being developed at the NASA Jet Propulsion Laboratory to provide a low-cost command and control processing center for science instruments and small payloads. The GPOCC supports the difficult transition from integration and test to flight operations. The prototype will incorporate four expert systems to perform telemetry, command, and mission planning functions as well as telecommunications scheduling. The first of these expert systems to be developed will perform telemetry data analysis and fault isolation, as well as propose corrective action. This Data Analysis Module (DAM) will monitor telemetry data and perform continual data monitoring and trend analysis based on a knowledge base and historic data archived on an optical disk storage device. The system maintains a continuous knowledge database of past system performance characteristics. The goal of the Data Analysis Module is to achieve consistent, dependable and validatable performance, to demonstrate thorough, reliable and fast reasoning, and to reduce the concentration demanded of flight analysis personnel

    Workshop proceedings: Information Systems for Space Astrophysics in the 21st Century, volume 1

    Get PDF
    The Astrophysical Information Systems Workshop was one of the three Integrated Technology Planning workshops. Its objectives were to develop an understanding of future mission requirements for information systems, the potential role of technology in meeting these requirements, and the areas in which NASA investment might have the greatest impact. Workshop participants were briefed on the astrophysical mission set with an emphasis on those missions that drive information systems technology, the existing NASA space-science operations infrastructure, and the ongoing and planned NASA information systems technology programs. Program plans and recommendations were prepared in five technical areas: Mission Planning and Operations; Space-Borne Data Processing; Space-to-Earth Communications; Science Data Systems; and Data Analysis, Integration, and Visualization

    The Chameleon Architecture for Streaming DSP Applications

    Get PDF
    We focus on architectures for streaming DSP applications such as wireless baseband processing and image processing. We aim at a single generic architecture that is capable of dealing with different DSP applications. This architecture has to be energy efficient and fault tolerant. We introduce a heterogeneous tiled architecture and present the details of a domain-specific reconfigurable tile processor called Montium. This reconfigurable processor has a small footprint (1.8 mm2^2 in a 130 nm process), is power efficient and exploits the locality of reference principle. Reconfiguring the device is very fast, for example, loading the coefficients for a 200 tap FIR filter is done within 80 clock cycles. The tiles on the tiled architecture are connected to a Network-on-Chip (NoC) via a network interface (NI). Two NoCs have been developed: a packet-switched and a circuit-switched version. Both provide two types of services: guaranteed throughput (GT) and best effort (BE). For both NoCs estimates of power consumption are presented. The NI synchronizes data transfers, configures and starts/stops the tile processor. For dynamically mapping applications onto the tiled architecture, we introduce a run-time mapping tool

    Mapping and Scheduling of Directed Acyclic Graphs on An FPFA Tile

    Get PDF
    An architecture for a hand-held multimedia device requires components that are energy-efficient, flexible, and provide high performance. In the CHAMELEON [4] project we develop a coarse grained reconfigurable device for DSP-like algorithms, the so-called Field Programmable Function Array (FPFA). The FPFA devices are reminiscent to FPGAs, but with a matrix of Processing Parts (PP) instead of CLBs. The design of the FPFA focuses on: (1) Keeping each PP small to maximize the number of PPs that can fit on a chip; (2) providing sufficient flexibility; (3) Low energy consumption; (4) Exploiting the maximum amount of parallelism; (5) A strong support tool for FPFA-based applications. The challenge in providing compiler support for the FPFA-based design stems from the flexibility of the FPFA structure. If we do not use the characteristics of the FPFA structure properly, the advantages of an FPFA may become its disadvantages. The GECKO1project focuses on this problem. In this paper, we present a mapping and scheduling scheme for applications running on one FPFA tile. Applications are written in C and C code is translated to a Directed Acyclic Graphs (DAG) [4]. This scheme can map a DAG directly onto the reconfigurable PPs of an FPFA tile. It tries to achieve low power consumption by exploiting locality of reference and high performance by exploiting maximum parallelism

    Science and Applications Space Platform (SASP) End-to-End Data System Study

    Get PDF
    The capability of present technology and the Tracking and Data Relay Satellite System (TDRSS) to accommodate Science and Applications Space Platforms (SASP) payload user's requirements, maximum service to the user through optimization of the SASP Onboard Command and Data Management System, and the ability and availability of new technology to accommodate the evolution of SASP payloads were assessed. Key technology items identified to accommodate payloads on a SASP were onboard storage devices, multiplexers, and onboard data processors. The primary driver is the limited access to TDRSS for single access channels due to sharing with all the low Earth orbit spacecraft plus shuttle. Advantages of onboard data processing include long term storage of processed data until TRDSS is accessible, thus reducing the loss of data, eliminating large data processing tasks at the ground stations, and providing a more timely access to the data

    Parallel processing and expert systems

    Get PDF
    Whether it be monitoring the thermal subsystem of Space Station Freedom, or controlling the navigation of the autonomous rover on Mars, NASA missions in the 1990s cannot enjoy an increased level of autonomy without the efficient implementation of expert systems. Merely increasing the computational speed of uniprocessors may not be able to guarantee that real-time demands are met for larger systems. Speedup via parallel processing must be pursued alongside the optimization of sequential implementations. Prototypes of parallel expert systems have been built at universities and industrial laboratories in the U.S. and Japan. The state-of-the-art research in progress related to parallel execution of expert systems is surveyed. The survey discusses multiprocessors for expert systems, parallel languages for symbolic computations, and mapping expert systems to multiprocessors. Results to date indicate that the parallelism achieved for these systems is small. The main reasons are (1) the body of knowledge applicable in any given situation and the amount of computation executed by each rule firing are small, (2) dividing the problem solving process into relatively independent partitions is difficult, and (3) implementation decisions that enable expert systems to be incrementally refined hamper compile-time optimization. In order to obtain greater speedups, data parallelism and application parallelism must be exploited
    corecore