
Influences on Throughput and Latency in Stream Programs

Vu Thien Nga Nguyen
University of Hertfordshire
v.t.nguyen@herts.ac.uk

Raimund Kirner
University of Hertfordshire

r.kirner@herts.ac.uk

Abstract
Stream programming is a promising approach to execute programs
on parallel hardware such as multi-core systems. It allows to reuse
sequential code at component level and to extend such code with
concurrency-handling at the communication level. In this paper
we investigate in the performance of stream programs in terms
of throughput and latency. We identify factors that affect these
performance metrics and propose an efficient scheduling approach
to obtain the maximal performance.

1. Introduction
With the current trend towards increasing number of execution
units running in parallel, stream programming has been emerged
by its elegant way of exposing useful types of paralleling. This pro-
gramming paradigm separates communication from computation.
This separation relieves the programmer of managing concurrent
communication and synchronisation at the same time.

Because of this advantage, several research projects have in-
troduced stream programming frameworks such as StreamIt [14],
Brook [2] and S-Net [7]. However, it is intricate to understand the
performance of stream programming. Possessing properties similar
to communication networks, stream programs are usually evaluated
in terms of latency and throughput. These two performance metrics
depends not only on internal factors such as scheduling policies but
also on external factors such as the arrival rate of data.

In this paper, we study the influences on the performance of in
stream programs in terms of throughput and latency. The paper i)
shows that different ranges of the data arrival rates give different in-
fluence on the performance; ii) analyses in which way the schedul-
ing policy affects the performance; and iii) proposes a scheduler
aiming to achieve the optimal performance of stream programs in
multicore systems. The proposed scheduler consists of a static strat-
egy targeting at the maximum throughput; and a heuristic dynamic
strategy which observes the runtime behaviours and automatically
tunes the policy to obtain the optimal latency while keeping the
maximal throughput.

The paper is organised as follows. Section 2 provides basic
backgrounds including stream programming paradigm and the
stream execution model. Section 3 discusses latency and through-
put in stream programming. Section 4 presents different ranges of
input rate with different affects on latency and throughput. Sec-
tion 5 investigates on the scheduler’s influences on the latency

Copyright is held by the author/owner(s).
FD-COMA 2013 2nd HiPEAC Workshop on Feedback-Directed Compiler Opti-
mization for Multi-Core Architectures, part of the 8th International Conference on
High-Performance and Embedded Architectures and Compilers, Berlin, Germany,
January 21-23, 2013
ACM SIGPLAN conference style.

and throughput. Based on these analysis, Section 6 proposes a
scheduling strategy to achieve the optimal performance. Section 7
describes related work and Section 8 presents conclusions and
planned future work.

2. Backgrounds
2.1 Stream Programming Paradigm
Stream programming is a paradigm that allows to express the paral-
lelism by decoupling computations and communications [2, 7, 14].
In this model, a program is represented as a directed graph whose
vertices are computation nodes and edges are communication chan-
nels called streams. For short, we from now use nodes instead of
computation nodes.

Data is expressed as a flow of messages moving between nodes
via streams. Streams connect nodes in different ways such as
pipeline, parallel, feedback, etc.

A node receives messages from a set of streams, called input
streams. The node then processes these messages to produce new
messages and sends to a set of streams, called output streams. For
one execution, a node may consume n messages and process to
produce m messages. The value of n and m may change at the
runtime, for example depending on the input data. The node can
progress only when n required messages from its input streams are
available.

Nodes that receives messages from outside of the stream pro-
grams are entry nodes. Similarly, nodes sending messages to out-
side of the stream programs are exit nodes. A stream program can
have multiple entry nodes and multiple exit nodes. Messages com-
ing from outside are called input messages and messages sending
to outside are called output messages. Other messages (messages
inside the stream program) are called intermediate message.

B"

C"

D"

A" E"
M MM

Figure 1. An example stream program

Figure 1 shows an example of a stream program. In this exam-
ple, the computations are done on 5 nodes: A, B, C, D, E. A is an
entry node and connected B in pipeline. B is followed by the par-
allel combination of C and D. This combination is then pipelined
with an exit node E. A message produced by B can take either the
route via C or D, i.e. can be processed either by C or D.

When a node consumes a message X (and possibly other mes-
sages) to produce a message Y (and possibly other messages), it
is said that X derives to Y, or Y is derived from X. In this case, X
is a predecessor of Y and Y is a successor of X. The predecessor -
successor relation is inherited, i.e. if X is predecessor of Y and Y is
predecessor of Z then X is also predecessor of Z.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Hertfordshire Research Archive

https://core.ac.uk/display/82953011?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

I1#

M0#

M3#

I2#

M1#

M4#

I3#

M2#

I4#

M6#

M7#
M5#

Ix# Input#Messages#

Output#Messages#

Intermediate#Messages#Mx#

Figure 2. An example of message derivation

An input message I
i

when processed by a stream program
derives to multiple intermediate messages M

j

before deriving to
output messages O

k

. Figure 2 shows an example of input messages
deriving to output messages. In this example, input message I2
derives to M1, M1 derives to M4 and M4 derives to output message
O3. M1 (together with input message I3) also derives to M5 and
then M5 derives to O4. An input is said to be completed when
all of its successors no longer exist in the stream program. That is
usually when all its output messages are produced.

2.2 Stream Execution Model
A typical framework for executing a stream program is shown in
Figure 3. A stream program first is compiled into runtime objects
managed by the Runtime System (RTS). These objects include
streams and tasks. Each stream is represented as a FIFO buffer
for storing messages. Each computation node is associated with
a task. Typically each task receives messages from a set of n
streams, called input streams. The task then processes messages
before sending them to a set of m streams, called output streams.

Stream'Programs'

Stream'Run/me'System'

Tasks% FIFO%Buffers%

Messages%

Scheduler'

Ready%Tasks% Resources/Workers%

B
C

D
A E

Figure 3. An Execution Model for Stream Programs

The RTS’s duty is to assure the semantics of the stream program.
In particular, an input message’s successors have to be generated in
order. In the example of Figure 2, input message I2 is completed
when it is first processed to produce message M1. M1 is then
processed to produce M4 and M5. O3 is produced by processing
M4 and O4 is produced by processing M5. There is no order
between M4 and M5. To preserve this semantics, the RTS ensures
that each task receives messages from the correct input streams and
sends messages to the correct output streams.

Additionally, the RTS ensures that all obligatory messages have
arrived before a task can make any progress. In the example in
Figure 2, to produce M5 a node has to wait until M1 and I3 have

arrived. Another semantics is reflected in the order of messages
within a stream. In most of the stream programming languages,
messages are transferred within streams in the FIFO manner. This
is guaranteed as the RTS uses FIFO buffers to represent streams.

The first and second semantic constraints decide whether a
task is ready or not. A task is ready when it has all the required
messages to make progress. In case of finite stream buffer sizes,
a task when trying to write to a full stream can not proceed and
therefore becomes not-ready.

Besides the RTS, a scheduler is required to distribute tasks to
physical resources. In the context of the scheduler, each physical
resource is addressed as a worker. A task is executable only if it is
ready. The scheduler employs a policy to decide:
• a ready task to be executed
• a worker to execute the task
• how long the worker will execute the task

3. Throughput and Latency in Stream Programs
Stream programs are similar to communication networks in the
sense that they transfer messages from one end to another via in-
terconnected nodes. For these reasons, the performance of stream
programs should be evaluated with similar metrics of communica-
tion networks, i.e. throughput and latency. However, unlike in com-
munication networks, nodes in stream programs contain computa-
tions. These computations need to be executed on a mutual plat-
form of physical resources (e.g. CPUs). This section discusses the
influences on throughput and latency in stream programs.

3.1 Throughput
Similar to communication networks, Throughput (Tp) of stream
programs is measured as the number of input messages are com-
pleted per time unit. Each node in a communication network is a
physical resource with its own throughput. Queuing theory there-
fore can be used to analyse the throughput with some assumptions
[12].

However, queuing theory is not applicable for stream programs
as nodes perform their computation on a shared platform of phys-
ical resources. The throughput of stream programs highly depends
on the scheduling policy.

3.2 Latency
Generally, latency is the delay experienced in the system, i.e. the
delay to transfer one message from one entry point to an exit
point. In stream programming, latency of an input message is the
time interval from when the input message arrives to when it is
completed.

Latency in stream programming may vary for different input
messages for two reasons. First, each node may take different
amounts of time to process different messages. Second, a message
can take different route inside the stream programs. In the example
shown in Figure 1, a message produced by B can pass either C or
D which may take different time to process the message.

On a platform with limited physical resources, the latency of
an input message also depends on the work load when the input
message arrives and the scheduling policy which decides when the
stream program starts to process the input message. If the scheduler
decides to process the input message immediately, it may increase
the latency of previous input messages as processing the new input
will bind some physical resources. Otherwise, the input message
will wait in the queue before getting into the stream program.
Since the queuing time of an input message is affected by resource
limitation and the previous input messages’ successors still to be
processed, it is should be separated from the processing time of the

input message. We therefore propose different kinds of latency as
follows.

• Queuing Latency (QL) of an input message is the time it
waits before getting processed by the stream program. The
queuing latency depends on when the scheduler decides to start
processing a new input message; and how frequently new input
messages arrive at the stream program.

• Processing Latency (PL) of an input message is the time in-
terval from when it is taken into the program until it is com-
pleted . Processing the input message’s successors may not be
continuous for two reasons. One reason is that one of its succes-
sors when reaching a node needs to wait for other messages so
that the node has sufficient messages to make progress. Another
reason is that the scheduler decides to halt processing the input
message’s successors due to the lack of physical resources.

• Overall Latency (L) is the sum of queuing latency and pro-
cessing latency. For the simplicity, from now on we use latency
to refer to overall latency.

For communication networks in which each node has its own
physical resource, the latency over the whole network can be rea-
soned from the latency over individual nodes. This is non-trivial for
stream programs in which nodes share a mutual number of physical
resources within the scheduler’s control.

4. Input Rate affects on Throughput and Latency
For most of stream programs, input messages arrive with a rate,
called Input Rate (IR). The IR along with the scheduling policy
are key factors controlling on the program’s throughput and latency.
In this section, we focus on the effects of the input rate alone on the
throughput and latency.

With a specific platform of physical resources and a specific
scheduling policy, Figure 4 shows a typical change in latency and
throughput according to the input rate. There are two marks that
divide the IR value into three ranges. Within each of these ranges,
the IR affects the throughput and latency in different ways. For the
simplicity, we assume that the stream program has exclusive usage
of the physical resources, i.e., no other application is running at the
same time on the platform.

La
te

nc
y

Th
ro

ug
hp

ut

Input Rate

Trough Latency

Peak Throughput

IRtroughL IRpeakTp

Latency
Throughput

Figure 4. Latency and Throughput are affected by Input Rate

4.1 Idling Range
As explained in the previous section, the latency of an input mes-
sage depends on the system load, i.e. how busy all the resources are.
At the beginning, when the first input message arrives all the re-
sources are free and immediately invoked to process the input mes-

sage and its successors. The smallest latency is therefore achieved
for the input message.

When the IR value is small enough that all the physical re-
sources are always free whenever an input message appears, all
input messages have the smallest latency value. Thus the average
latency is also smallest and this value is called Trough Latency.
The throughput in this case equal to the IR.

There might be a case where the average latency is decreased
when the IR increased. That is when a node requires successors
from two input messages to make progress. That means the pro-
cessing the former input message can not continue until the later
input message arrives. In this case, the latency is decreased when
the IR gets higher but this is a temporary improvement. When the
IR reaches a value that the faster arrival of input messages do not
help nodes make progress earlier, the latency stops decreasing and
reaches the stable value. The trough latency in this case is this sta-
ble latency value. Throughput in this case is smaller than but still
proportional to the IR.

The highest IR value at which the system still keep the trough
latency is called IR

troughL

. Whenever the actual IR is smaller than
this value, there are time intervals where the physical resources are
idling and waiting for input messages. For this reason, the period
from 0 to IR

troughL

is called Idling Range.

4.2 Working Range
When the IR exceeds the IR

troughL

value it can no longer be guar-
anteed that the system exclusively processes one message at a time.
Instead the processing of messages tends to get overlapped. When
an input message arrives, the physical resources are partly or com-
pletely busy for processing previous input messages’ successors.
The latency of an input message gets higher either because the in-
put message has to wait in the queue or because the resources are
not fully used to process the input message and its successors but
to contribute to process others. For this reason, the average latency
is therefore higher than the trough latency.

While the latency gets worse, the throughput becomes better.
The high input arrival rate gives the stream program the chance to
consume input messages faster. More input messages are processed
and therefore the throughput gets higher. However when the IR is
high enough to saturate the system, the throughput stops increasing.
The highest throughput value that the system can achieve is called
Peak Throughput. The IR value at which this happens is called
IR

peakTP

.
We call the IR range from IR

troughL

to IR
peakTP

as Working
Range as with the IR in this range the platform does not have any
moment idling but working constantly.

4.3 Overload Range
With an IR higher than IR

peakTP

, the throughput does not exceed
the peak value. The system cannot consume input messages as fast
as input rate. The platform gets saturated after an initial period.
After this initial period input messages have to wait before getting
processed. The later the input message comes, the more input
messages are already waiting in the queue before it. The queuing
latency therefore rises up and eventually becomes infinity. As the
result, the average latency is infinity.

In this circumstance, the platform is saturated and cannot keep
up with the requested input rate. Hence the range from IR

peakTP

up is called Overload Range.

5. Scheduler affects on Throughput and Latency
As presented in Section 2.2, the scheduler manages a set of workers
and a set of tasks. One worker is associated to a physical resource
of the platform and one task is associated to a computation node

of the stream program. The scheduler decides when and how long
a worker performs a task. This decision has a strong influence in
throughput and latency of the stream program.

5.1 Throughput
Consider a stream program deployed on a platform of homoge-
neous physical resources. Let N be the number of workers. To pro-
cess M input messages, it takes the stream program the time period
P. The total time that N workers have spent over that period is:

T = N ⇥ P (1)
Within the period P, N workers spend time C on computations

and time W on idling. The sum of computation time and the idling
time must is equal to the total time that N workers have:

T = C +W (2)
From Equation 1 and Equation 2, we have:

T = N ⇥ P = C +W (3)
We have the throughput of the stream program is equal to the

number of input messages over the time period:

Tp =

M

P
(4)

From Equation 3, we have:

Tp =

M ⇥N

C +W
(5)

As C is the required computation time for processing M input
messages, it varies on the implementation and the underlying hard-
ware. These factors are not under the sphere of control of the sched-
uler. We thus can assume C is constant in the scheduler’s context.
Throughput then is inverse-proportional to the idling time.

There are two situations that a worker gets idling. One situation
is that there is no ready task because the input rate is too low.
As explained in Section 4, when input rate is in idling range the
throughput is as low as the input rate. The other situation happens
when the input rate falls in two other ranges. There are ready tasks
and also free workers at the same time. This happens usually due
to the mapping strategy of the scheduler.

The scheduling policy determines the idling time and therefore
controls the throughput value. If the scheduling policy helps to
achieve higher throughput during the working range, the stream
program can consume more input messages and therefore can deal
with higher input rate. As a result, it expands the working range by
increasing IR

peakTP

value, i.e. IR needs a higher value to saturate
the system. The peak throughput also is increased.

5.2 Processing Latency
As described in Section 2.2, latency is the sum of queuing latency
and processing latency. The queuing latency of an input message
reflects the time the input message has to wait before getting pro-
cessed. Therefore the queuing latency depends on the speed at
which the stream program consumes input messages. That means
the queuing latency depends on the throughput. In this section, we
focus on the processing latency which is directly controlled by the
scheduler.

The processing latency of an input message is the time it takes
to make the input message completed, i.e. the period from when
it is consumed until all its output messages are produced. Within
this period, the input message itself and all its successors are pro-
cessed. If these messages are processed continuously, the latency is
minimal. This is decided by the RTS and the scheduler.

As explained in Section 2.2, to preserve the stream program’s
semantics the RTS decides when a task is ready. The scheduler

affects processing an input messages and its successors by deciding
the order of executing ready tasks. In particular, the scheduler
determines when a ready task is executed and for how long.

The scheduling policy affects the latency in two first ranges of
the input rate as the latency rises up to infinity when the input rate
falls in the overload range. Within these two ranges, while deciding
the executing order of ready tasks, the scheduler effectively has an
influence on the latency and also the trough latency. If the scheduler
helps to reduce the trough latency, the stream programs can process
input messages faster. That means the workers get idling more often
in the idling range. Therefore the input rate needs a higher value to
get in the working range, i.e., the IR

troughL

is reduced.

6. A Proposed Scheduler for Maximising
Performance

In this section, we propose a scheduler aiming to maximise the
throughput and minimise the processing latency. We focus only
on the processing latency because the queuing latency depends on
both the input rate and the throughput. When the throughput is
maximised, the queuing latency is also minimised as messages are
taken to by the program with the highest rate. Hence while max-
imising the throughput, the proposed scheduler effectively reducing
the queuing latency.

Generally, all ready tasks are stored in a central task queue as
in Figure 5. Each task in the task queue has a priority which is
calculated dynamically during the runtime. A worker requests for
a task from the task queue when it gets idling. The task with the
highest priority at that time will be chosen and assigned to the
requesting worker. The worker executes the task until when either
the task becomes not ready or it is asked to yield.

The following of this section provides more detail about the
scheduling policy and explains how it steers the performance.

Central(Task(Queue(
T(T(T(T(…

Worker(…"Worker(Worker(

T(T(T(

Figure 5. Latency of an individual processing component

6.1 Maximising Throughput
As shown in Section 5.1, the throughput is maximal when the idling
time is minimal assuming that the individual processing times of
messages are independent from the scheduling decisions. In the
proposed scheduler, each worker requests for a task whenever it
is idling. If there is a ready task in the central task queue, it will be
assigned to the worker immediately. By doing this, each worker is
kept busy as much as possible. A worker has to wait only when
there is no ready task in the central task queue because input
messages have not arrived. The input rate is not under the sphere of
control of the scheduler.

Therefore by using a central task queue, the scheduler min-
imises the idling time. However this also raises a risk of overhead.

In particular, the central task queue can become a bottleneck when
too many workers request at the same time.

For the implementation, an efficient data structure should be
used to implement the central task queue. Also it is suggested to
dedicate a worker as a conductor which controls the central task
queue. In this case, a sufficient communication protocol between
the conductor and the workers is necessary in order to reduce the
delay from when a worker sends a task request till receiving one.

6.2 Minimising the processing latency
As presented in Section 5.2, how an input message and its succes-
sors are processed has a strong affect on the processing latency. As
the RTS applies some constraints to preserve the stream program’s
semantics, the scheduler has control only on ready tasks. When a
worker becomes free, the scheduler can make two decisions: which
ready task is executed and for how long. In general, a message can
be routed to streams dynamically during the runtime as explained
in Section 2.1. Thus it is difficult to make these decisions at the
compile time.

Our proposed scheduler uses a heuristic to compute the task
priority based on the state of input and output streams of the task
during the runtime. Let I be the number of messages in the task’s
input streams and O be the number of messages in the task’s output
streams. The I value of entry tasks are always zero and the O value
of exit tasks are always zero. The task’s priority is calculated as
follows.

P =

I + 1

(O + 1)(I +O + 1)

(6)

Equation 6 implies that a task’s priority has a positive correla-
tion with its I value and a negative correlation with its O value.
When a task consumes n messages and produces m messages, it
lowers its I value by n, raises its O value by m and also raises the
succeeding task’s I value by m. That means, the task’s priority is
reduced while the following task’s priority is increased. This in-
creases the chance of scheduling the succeeding task and therefore
the message’s successor will be processed earlier. This therefore
lowers the latency of the input messages that are the message’s pre-
decessors.

After a task has processed one message, the priorities are reeval-
uated. The scheduler then pick the highest-priority task to assign to
a worker. By doing this, the priority is finely updated and there-
fore the heuristic is more accurate. However, this also raises the
overhead for switching tasks and calculating the priority. For the
implementation, a task when scheduled should process a limited
but large number of messages in order to compensate the cost of
loading the task.

7. Related Work
Stream programming has seen a revival over the last years, due to
the main-stream multi-core computing. Gordon et al. have iden-
tified three forms of parallelism to be exploited in stream pro-
gramming: task parallelism, data parallelism, and pipeline paral-
lelism [5]. The performance of a stream program can be optimised
by task allocation, resource mapping, and scheduling policy.

One of the prominent stream programming approaches is
StreamIt [13], which is conceptually based on synchronous data
flow (SDF). In the initial version of the language, all flow rates
have to be static, even though this can be avoided in later versions
of the language.

There are many approaches of performance-optimised schedul-
ing of StreamIt programs. All encountered approaches assume a
static structure of the streaming graph, as StreamIt currently re-
quires at compilation time fixed message routes, i.e., the connec-
tion of network nodes is determined at compile time. Karczmarek

et al. introduced the concept of phase scheduling for StreamIt pro-
grams, exploiting the static nature of the streaming graph [10]. The
goal of phase scheduling is to address the trade-off between code
size and data size [1] without considering the actual performance
of the program. The concept of phase scheduling is to construct
the stream processing as a repetition of phases. Based on this con-
struction, one strategy is to deploy each phase on one resource [15].
The phases are executed in parallel to take advantage of data paral-
lelism. Another scheduling strategy is to execute on each resource
a separate phase [6]. In this case relatively long waiting times can
happen if synchronisation between different phases happens.

Farhad et al. recently used efficient approximative algorithms
with bounded inaccuracy to schedule StreamIt programs [3]. In a
different approach they built a model of communication costs to
improve performance-guided optimisations [4].

Stream programming has been also introduced for hard real-
time computing. Giotto is a coordination language where nodes
are scheduled in a strict static time-triggered way [9]. Message
processing is synchronous, i.e., a constant number of messages is
consumed and produced per invocation by a node. With such a
static language as Giotto is, one actually has to solve the inverse
problem to that ours: with Giotto one starts with the performance
values as specification, and has to produce a schedule in order to
fulfill the required performance constraints.

With our discussion of performance of stream programming we
include also more dynamic network structures of stream programs,
as this, for example, is the case with the coordination language S-
Net [8]. Streaming programs in S-Net can have a dynamic network
structure, which requires the use of a dynamic scheduling algo-
rithm. In S-Net there are no constraints over the flow rate of input.
Thus, actual throughput and latency depend on the concrete mes-
sage values and timings of the input stream. CAL (constraint ag-
gregation language) has been developed to provide contracts of the
behaviour of network nodes [11].

8. Conclusion & Future Work
In this paper we have discussed the performance measures through-
put and latency for stream programming. We have contrasted them
to the established calculation of throughput and latency in the do-
main of communication networks. Even though there are many
similarities, the subtle but important difference is that communica-
tion networks typically have a separate resource for each network
node, while in stream programming typically multiple nodes have
to share each processing resource. Thus the behaviour of stream
programs get an additional dependency, the resource allocation pol-
icy, often described by the allocation, mapping, and scheduling of
tasks on resources.

Most discussions of performance of stream programs have been
based on the assumption of the special case of static network struc-
tures, synchronous communication, and fixed data rates. Important
insights are the formation of schedule-dependent trough-latency
and peak throughput. Within this paper we discuss more generally
the influence of scheduling on throughput and latency of stream
programs. In addition, we outline a scheduling approach for such
dynamic streaming programs.

References
[1] S. S. Bhattacharyya. Optimization trade-offs in the synthesis of soft-

ware for embedded dsp. In IN CASES, 1999.
[2] I. Buck, T. Foley, D. Horn, J. Sugerman, K. Fatahalian, M. Houston,

and P. Hanrahan. Brook for gpus: stream computing on graphics
hardware. ACM Trans. Graph., 23(3):777–786, Aug. 2004.

[3] S. M. Farhad, Y. Ko, B. Burgstaller, and B. Scholz. Orchestration
by approximation: mapping stream programs onto multicore architec-

tures. In Proc. 16th International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS’11),
pages 357–368, New Port Beach, CA, USA, Mar. 2011.

[4] S. M. Farhad, Y. Ko, B. Burgstaller, and B. Scholz. Profile-guided
deployment of stream programs on multicores. In Proc. ACM SIG-
PLAN/SIGBED Conference on Languages, Compilers and Tools for
Embedded Systems (LCTES’12), pages 79–88, Beijing, China, June
2012.

[5] M. I. Gordon, W. Thies, and S. Amarasinghe. Exploiting coarse-
grained task, data, and pipeline parallelism in stream programs. In
Proc. Int’l Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS’06), 2006.

[6] M. I. Gordon, W. Thies, M. Karczmarek, J. Lin, A. S. Meli, A. A.
Lamb, C. Leger, J. Wong, H. Hoffmann, D. Maze, and S. Amaras-
inghe. A stream compiler for communication-exposed architectures.
SIGOPS Oper. Syst. Rev., 36(5):291–303, Oct. 2002.

[7] C. Grelck, S.-B. Scholz, and A. Shafarenko. A Gentle Introduction
to S-Net: Typed Stream Processing and Declarative Coordination of
Asynchronous Components. Parallel Processing Letters, 18(2):221–
237, 2008.

[8] C. Grelck, S.-B. Scholz, and A. Shafarenko. A gentle introduction
to S-Net: Typed stream processing and declarative coordination of
asynchronous components. Parallel Processing Letters, 18(2):221–
237, 2008.

[9] T. A. Henzinger, C. M. Kirsch, and S. Matic. Composable code gen-
eration for distributed Giotto. In Proc. ACM SIGPLAN/SIGBED Con-
ference on Languages, Compilers, and Tools for Embedded Systems
(LCTES). ACM Press, 2005.

[10] M. Karczmarek, W. Thies, and S. Amarasinghe. Phased scheduling of
stream programs. SIGPLAN Not., 38(7):103–112, June 2003.

[11] F. Penczek, R. Kirner, R. Poss, C. Grelck, and A. Shafarenko. An
infrastructure for multi-level optimisation through property annota-
tion and aggregation. In Proc. 4th Int. Workshop on Non-functional
System Properties in Domain Specific Modeling Languages (NF-
PinDSML’12), Innsbruck, Austria, Oct. 2012.

[12] T. G. Robertazzi. Computer Networks and Systems: Queueing Theory
and Performance Evaluation. Springer-Verlag, 1994.

[13] B. Thies, M. Karczmarek, and S. Amarasinghe. StreamIt: A language
for streaming applications. In Proc. 11th International Conference on
Compiler Construction (CC’02), pages 179–196, London, UK, 2002.
Springer Verlag.

[14] W. Thies, M. Karczmarek, and S. P. Amarasinghe. Streamit: A lan-
guage for streaming applications. In Proceedings of the 11th Interna-
tional Conference on Compiler Construction, CC ’02, pages 179–196,
London, UK, UK, 2002. Springer-Verlag.

[15] D. Zhang, Q. J. Li, R. Rabbah, and S. Amarasinghe. A lightweight
streaming layer for multicore execution. SIGARCH Comput. Archit.
News, 36(2):18–27, May 2008.

