670 research outputs found

    Phase-sensitive correlation optical time-domain reflectometer using quantum phase noise of laser light

    Get PDF
    Abstract: We propose and experimentally demonstrate a simple approach to realize a phase-sensitive correlation optical time-domain reflectometer (OTDR) suitable for detection and localization of dynamic perturbations along a single-mode optical fiber. It is based on the quantum phase fluctuations of a coherent light emitted by a telecom DFB diode laser. Truly random probe signals are generated by an interferometer with the optical path difference exceeding the coherence length of the laser light. Speckle-like OTDR traces were obtained by calculating cross-correlation functions between the probe light and the light intensity signals returned back from the sensing fiber. Perturbations are detected and localized by monitoring time variations of correlation amplitude along the fiber length. Results of proof-of-concept experimental testing are presented

    Fiber Optic Sensors and Fiber Lasers

    Get PDF
    The optical fiber industry is emerging from the market for selling simple accessories using optical fiber to the new optical-IT convergence sensor market combined with high value-added smart industries such as the bio industry. Among them, fiber optic sensors and fiber lasers are growing faster and more accurately by utilizing fiber optics in various fields such as shipbuilding, construction, energy, military, railway, security, and medical.This Special Issue aims to present novel and innovative applications of sensors and devices based on fiber optic sensors and fiber lasers, and covers a wide range of applications of optical sensors. In this Special Issue, original research articles, as well as reviews, have been published

    Review: optical fiber sensors for civil engineering applications

    Get PDF
    Optical fiber sensor (OFS) technologies have developed rapidly over the last few decades, and various types of OFS have found practical applications in the field of civil engineering. In this paper, which is resulting from the work of the RILEM technical committee “Optical fiber sensors for civil engineering applications”, different kinds of sensing techniques, including change of light intensity, interferometry, fiber Bragg grating, adsorption measurement and distributed sensing, are briefly reviewed to introduce the basic sensing principles. Then, the applications of OFS in highway structures, building structures, geotechnical structures, pipelines as well as cables monitoring are described, with focus on sensor design, installation technique and sensor performance. It is believed that the State-of-the-Art review is helpful to engineers considering the use of OFS in their projects, and can facilitate the wider application of OFS technologies in construction industry

    Recent Advances in Distributed Acoustic Sensing Based on Phase-Sensitive Optical Time Domain Reflectometry

    Get PDF
    Distributed acoustic sensing (DAS) using coherent Rayleigh backscattering in an optical fiber has become a ubiquitous technique for monitoring multiple dynamic events in real time. It has continued to constitute a steadily increasing share of the fiber-optic sensor market, thanks to its interesting applications in many safety, security, and integrity monitoring systems. In this contribution, an overview of the recent advances of research in DAS based on phase-sensitive optical time domain reflectometry (ϕ-OTDR) is provided. Some advanced techniques used to enhance the performance of ϕ-OTDR sensors for measuring backscattering intensity changes through reduction of measurement noise are presented, in addition to methods used to increase the dynamic measurement capacity of ϕ-OTDR schemes beyond conventional limits set by the sensing distance. Recent ϕ-OTDR configurations which significantly enhance the measurement spatial resolution, including those which decouple it from the probing pulse width, are also discussed. Finally, a review of recent advances in more precise quantitative measurement of an external impact based on frequency shift and phase demodulation methods using simple direct detection ϕ-OTDR schemes is given

    Chirped-pulse phase-sensitive optical time domain reflectometry

    Get PDF
    El mundo actual funciona gracias a las grandes infraestructuras que dotan de energía y transporte seguros a sus ciudadanos. Dichas infraestructuras (presas, diques, gaseoductos, oleoductos, puentes, líneas de ferrocarril, carreteras…) típicamente presentan grandes dimensiones y es especialmente difícil monitorizar su buen funcionamiento y su salud estructural además de protegerlas de posibles amenazas. Los sensores distribuidos de fibra óptica son una solución fiable y rentable para esta problemática, ya que permiten medir vibraciones, deformaciones y temperatura a lo largo de todos los puntos de una fibra óptica estándar de comunicaciones. Los sensores de fibra óptica basados en scattering Rayleigh son particularmente útiles cuando las medidas deben ser realizadas en tiempo real, como por ejemplo en la detección y caracterización de vibraciones. En esta tesis, se ha realizado un estudio acerca de distintas soluciones y alternativas a las limitaciones de la tecnología OTDR. Se ha propuesto una nueva técnica, derivada de ésta, que ofrece unas prestaciones que superan notablemente a las de los sistemas OTDR tradicionales. Para ello, en primer lugar, se ha procedido a realizar un estudio en profundidad de los fundamentos y el estado del arte de las técnicas de monitorización basadas en Reflectometría Óptica en el Dominio del Tiempo (OTDR, por sus siglas en inglés) y, en particular, sobre la implementación sensible a la fase, también conocida como OTDR. Se ha estudiado la limitación en rango y resolución de los sistemas OTDR principalmente asociada a la aparición de efectos no lineales como la inestabilidad de modulación. Actualmente, un OTDR tradicional presenta una resolución máxima del orden de los 10 metros para un rango de medida del orden de pocas decenas de km (si no se aplica ningún tipo de técnica de amplificación distribuida). Además de estudiar esta limitación y a qué es debida, se han propuesto dos técnicas para mitigar los efectos perjudiciales de la MI. En primer lugar, se ha realizado un estudio del efecto de la forma de los pulsos ópticos empleados en el sensor en la traza retrodispersada en un OTDR. Se ha podido comprobar cómo los pulsos triangulares o gaussianos presentan mayor robustez que los pulsos rectangulares, tradicionalmente empleados, frente a la MI. En segundo lugar, se ha propuesto una técnica basada en el concepto de Amplificación de Pulsos Chirpeados (CPA, por sus siglas en inglés), que ha permitido desarrollar un OTDR con resoluciones milimétricas. Hasta el momento ningún OTDR había podido llegar a tales resoluciones, lo que abre un nuevo abanico de aplicaciones a la tecnología OTDR donde se requiera alta resolución espacial en la medida. También se ha estudiado la otra gran limitación de este tipo de sensores: su comportamiento no lineal ante una perturbación. Actualmente, salvo que se implementen técnicas de recuperación de fase o barridos en longitud de onda que implican más complejidad, coste y tiempo de medida, no es posible realizar medidas cuantificables de temperatura o deformaciones. Del mismo modo, tampoco se pueden realizar medidas acústicas reales. En este trabajo, en primer lugar, se propone emplear la técnica de Reconstrucción de Fase empleando Diferenciación Óptica Ultrarápida (PROUD, por sus siglas en inglés) para recuperar el campo complejo de una señal OTDR. Con esta medida, el sensor pasaría a comportarse de forma lineal sin la complejidad intrínseca de los métodos tradicionales de detección de fase. En segundo lugar, y de aquí viene el nombre de esta tesis doctoral, se propone el uso de pulsos chirpeados en los sensores OTDR. La nueva técnica llamada Chirped-Pulse OTDR, ha permitido la medida de forma lineal de cambios de temperatura y deformaciones, en un único disparo y sin la necesidad de realizar barridos en frecuencia o implementar detección coherente. A lo largo de este trabajo, se han alcanzado resoluciones de 0.5mK/4n y se ha demostrado la posibilidad de hacer medidas acústicas reales. También se han estudiado las limitaciones de esta técnica y propuesto varias soluciones. Se ha demostrado que el ruido de fase del láser empleado en el sistema, puede ser mitigado con esta nueva técnica. Además, se ha propuesto el uso de amplificación distribuida basada en scattering Raman estimulado para alcanzar rangos de medida mayores, hasta 75 km con una resolución espacial de 10 m

    Distributed opto-mechanical analysis of liquids outside standard fibers coated with polyimide

    Full text link
    The analysis of surrounding media has been a long-standing challenge of optical fiber sensors. Measurements are difficult due to the confinement of light to the inner core of standard fibers. Over the last two years, new sensor concepts have enabled the analysis of liquids outside the cladding boundary, where light does not reach. Sensing is based on opto-mechanical, forward stimulated Brillouin scattering interactions between guided light and sound waves. In most previous works, however, the protective polymer coating of the fiber had to be removed first. In this work, we report the opto-mechanical analysis of liquids outside commercially available, standard single-mode fibers with polyimide coating. The polyimide layer provides mechanical protection but can also transmit acoustic waves from the fiber cladding towards outside media. Comprehensive analysis of opto-mechanical coupling in coated fibers that are immersed in liquid is provided. The model shows that forward stimulated Brillouin scattering spectra in coated fibers are more complex than those of bare fibers, and strongly depend on the exact coating diameter and the choice of acoustic mode. Nevertheless, sensing outside coated fibers is demonstrated experimentally. Integrated measurements over 100 meters of fiber clearly distinguish between air, ethanol and water outside polyimide coating. Measured spectra are in close quantitative agreement with the analytic predictions. Further, distributed opto-mechanical time-domain reflectometry mapping of water and ethanol outside coated fiber is reported, with a spatial resolution of 100 meters. The results represent a large step towards practical opto-mechanical fiber sensors

    Comb-based Characterization of Photonic Devices

    Get PDF
    Integrated photonics has been one of the fastest-growing fields in science. Measuring photonic devices in amplitude and phase (i.e. complex response) provides insight into their performance. Swept-wavelength interferometry is a prominent technique for the broadband characterization of the complex response. It leverages continuous advances in rapidly tunable laser sources, but is prone to systematic errors associated to the calibration of the frequency. This thesis focuses on the non-destructive characterization of ultralow-loss photonic devices using swept wavelength interferometric technique. We overcome issues associated to nonlinear tuning by calibrating the frequency of the laser with the aid of a frequency comb. We apply the concept to diverse components of relevance including microresonators and spiral waveguides. In addition, we provide an overview and comparative assessment of the state of the art in the field
    corecore