11,527 research outputs found

    Optical Non-Orthogonal Multiple Access for Visible Light Communication

    Get PDF
    The proliferation of mobile Internet and connected devices, offering a variety of services at different levels of performance, represents a major challenge for the fifth generation wireless networks and beyond. This requires a paradigm shift towards the development of key enabling techniques for the next generation wireless networks. In this respect, visible light communication (VLC) has recently emerged as a new communication paradigm that is capable of providing ubiquitous connectivity by complementing radio frequency communications. One of the main challenges of VLC systems, however, is the low modulation bandwidth of the light-emitting-diodes, which is in the megahertz range. This article presents a promising technology, referred to as "optical- non-orthogonal multiple access (O-NOMA)", which is envisioned to address the key challenges in the next generation of wireless networks. We provide a detailed overview and analysis of the state-of-the-art integration of O-NOMA in VLC networks. Furthermore, we provide insights on the potential opportunities and challenges as well as some open research problems that are envisioned to pave the way for the future design and implementation of O-NOMA in VLC systems

    Precoded Chebyshev-NLMS based pre-distorter for nonlinear LED compensation in NOMA-VLC

    Get PDF
    Visible light communication (VLC) is one of the main technologies driving the future 5G communication systems due to its ability to support high data rates with low power consumption, thereby facilitating high speed green communications. To further increase the capacity of VLC systems, a technique called non-orthogonal multiple access (NOMA) has been suggested to cater to increasing demand for bandwidth, whereby users' signals are superimposed prior to transmission and detected at each user equipment using successive interference cancellation (SIC). Some recent results on NOMA exist which greatly enhance the achievable capacity as compared to orthogonal multiple access techniques. However, one of the performance-limiting factors affecting VLC systems is the nonlinear characteristics of a light emitting diode (LED). This paper considers the nonlinear LED characteristics in the design of pre-distorter for cognitive radio inspired NOMA in VLC, and proposes singular value decomposition based Chebyshev precoding to improve performance of nonlinear multiple-input multiple output NOMA-VLC. A novel and generalized power allocation strategy is also derived in this work, which is valid even in scenarios when users experience similar channels. Additionally, in this work, analytical upper bounds for the bit error rate of the proposed detector are derived for square MM-quadrature amplitude modulation.Comment: R. Mitra and V. Bhatia are with Indian Institute of Technology Indore, Indore-453552, India, Email:[email protected], [email protected]. This work was submitted to IEEE Transactions on Communications on October 26, 2016, decisioned on March 3, 2017, and revised on April 25, 2017, and is currently under review in IEEE Transactions on Communication

    Optical Power Domain NOMA for Visible Light Communications

    Get PDF
    We propose an optical power domain non-orthogonal multiple access (OPD-NOMA) scheme for visible light communications. OPD-NOMA superposes user messages in the optical power domain based on a light-emitting diode (LED) array. The maximum driven current for respective circuits is reduced compared to that of conventional NOMA, in which the LED-array-module is driven by a single circuit. OPD-NOMA reduces the gain and bandwidth requirements for the driver circuit of light source. The nonlinear power-current response of LED largely restricts its usable dynamic range and thus the transmit power. In OPD-NOMA, signals with lower powers suffer from reduced nonlinear distortion. The experimental results show that, OPD-NOMA offers improved transmission performance compared to conventional NOMA using the same driver circuit, since it can make a better use of the linear dynamic range of the LED’s power-current response

    A review of gallium nitride LEDs for multi-gigabit-per-second visible light data communications

    Get PDF
    The field of visible light communications (VLC) has gained significant interest over the last decade, in both fibre and free-space embodiments. In fibre systems, the availability of low cost plastic optical fibre (POF) that is compatible with visible data communications has been a key enabler. In free-space applications, the availability of hundreds of THz of the unregulated spectrum makes VLC attractive for wireless communications. This paper provides an overview of the recent developments in VLC systems based on gallium nitride (GaN) light-emitting diodes (LEDs), covering aspects from sources to systems. The state-of-the-art technology enabling bandwidth of GaN LEDs in the range of >400 MHz is explored. Furthermore, advances in key technologies, including advanced modulation, equalisation, and multiplexing that have enabled free-space VLC data rates beyond 10 Gb/s are also outlined

    Multiuser MIMO-OFDM for visible light communications

    No full text
    Visible light communication (VLC) is emerging as a promising technique to provide ubiquitous wireless connection. In this paper, a multiuser VLC system utilizing multiple-input multiple-output (MIMO) orthogonal frequency-division multiplexing (OFDM) is investigated. Since the distances of the multiple transmitter-receiver links are different, their temporal delays are also different, resulting in complex channel gain and phase differences when transformed to the frequency domain. For each subcarrier in OFDM, the corresponding precoding matrix is calculated in the frequency domain to eliminate multiuser interference. Phase information in the frequency domain is first considered, where complex, instead of real, channel matrices are used for precoding, which reduces the channel correlation and achieves better performance. Moreover, minimum dc bias, unified dc bias, and asymmetrically clipped optical OFDM-based schemes are proposed to generate real-valued nonnegative signals for intensity modulation, and their performances are validated via simulations with zero forcing and minimum mean-squared error (MMSE) precoding techniques

    Signal Processing Techniques for 6G

    Get PDF
    • …
    corecore