4,152 research outputs found

    Automating the Reconstruction of Neuron Morphological Models: the Rivulet Algorithm Suite

    Get PDF
    The automatic reconstruction of single neuron cells is essential to enable large-scale data-driven investigations in computational neuroscience. The problem remains an open challenge due to various imaging artefacts that are caused by the fundamental limits of light microscopic imaging. Few previous methods were able to generate satisfactory neuron reconstruction models automatically without human intervention. The manual tracing of neuron models is labour heavy and time-consuming, making the collection of large-scale neuron morphology database one of the major bottlenecks in morphological neuroscience. This thesis presents a suite of algorithms that are developed to target the challenge of automatically reconstructing neuron morphological models with minimum human intervention. We first propose the Rivulet algorithm that iteratively backtracks the neuron fibres from the termini points back to the soma centre. By refining many details of the Rivulet algorithm, we later propose the Rivulet2 algorithm which not only eliminates a few hyper-parameters but also improves the robustness against noisy images. A soma surface reconstruction method was also proposed to make the neuron models biologically plausible around the soma body. The tracing algorithms, including Rivulet and Rivulet2, normally need one or more hyper-parameters for segmenting the neuron body out of the noisy background. To make this pipeline fully automatic, we propose to use 2.5D neural network to train a model to enhance the curvilinear structures of the neuron fibres. The trained neural networks can quickly highlight the fibres of interests and suppress the noise points in the background for the neuron tracing algorithms. We evaluated the proposed methods in the data released by both the DIADEM and the BigNeuron challenge. The experimental results show that our proposed tracing algorithms achieve the state-of-the-art results

    On-barn pig weight estimation based on body measurements by structure-from-motion (SfM)

    Get PDF
    Information on the body shape of pigs is a key indicator to monitor their performance and health and to control or predict their market weight. Manual measurements are among the most common ways to obtain an indication of animal growth. However, this approach is laborious and difficult, and it may be stressful for both the pigs and the stockman. The present paper proposes the implementation of a Structure from Motion (SfM) photogrammetry approach as a new tool for on-barn animal reconstruction applications. This is possible also to new software tools allowing automatic estimation of camera parameters during the reconstruction process even without a preliminary calibration phase. An analysis on pig body 3D SfM characterization is here proposed, carried out under different conditions in terms of number of camera poses and animal movements. The work takes advantage of the total reconstructed surface as reference index to quantify the quality of the achieved 3D reconstruction, showing how as much as 80% of the total animal area can be characterized

    Conjoint Influence of Maps and Auded Prose on Children’s Retrieval of Instruction

    Get PDF
    Fifth-grade students studied a map of a fictitious island while twice listening to a related narrative containing target feature and nonfeature items. The students were cued by varying iconic and verbal stimuli in four map cue conditions; they received immediate and delayed tests to recall text items, map features, and feature locations. The students were also required to rate their confidence in each response. Students remembered more text features and were more confident of their responses when cued by icons plus labels and by icons only. Students in these groups also recalled more map features and their locations on a map reconstruction task. Memory for feature information and pictorial retrieval cues appeared to activate memory for nonfeature information contained in the text

    High-speed X-ray ptychographic tomography

    Get PDF
    X-ray ptychography is a coherent scanning imaging technique widely used at synchrotron facilities for producing quantitative phase images beyond the resolution limit of conventional x-ray optics. The scanning nature of the technique introduces an inherent overhead to the collection at every scan position and limits the acquisition time of each 2D projection. The overhead associated with motion can be minimised with a continuous-scanning approach. Here we present an acquisition architecture based on continuous-scanning and up-triggering which allows to record ptychographic datasets at up to 9 kHz. We demonstrate the method by applying it to record 2D scans at up to 273 µm2/s and 3D scans of a (20 µm)3 volume in less than three hours. We discuss the current limitations and the outlook toward the development of sub-second 2D acquisition and minutes-long 3D ptychographic tomograms

    Removing the twin image in digital holography by segmented filtering of in-focus twin image

    Get PDF
    We propose and investigate a new digital method for the reduction of twin-image noise from digital Fresnel holograms. For the case of in-line Fresnel holography the unwanted twin is present as a highly corruptive noise when the object image is numerically reconstructed. We propose to firstly reconstruct the unwanted twin-image when it is in-focus and in this plane we calculate a segmentation mask that borders this in focus image. The twin-image is then segmented and removed by simple spatial filtering. The resulting digital wavefield is the inverse propagated to the desired object image plane. The image is free of the twin-image resulting in improved quality reconstructions. We demonstrate the segmentation and removal of the unwanted twin-image from in-line digital holograms containing real-world macroscopic objects. We offer suggestions for its rapid computational implementation

    Model and Appearance Based Analysis of Neuronal Morphology from Different Microscopy Imaging Modalities

    Get PDF
    The neuronal morphology analysis is key for understanding how a brain works. This process requires the neuron imaging system with single-cell resolution; however, there is no feasible system for the human brain. Fortunately, the knowledge can be inferred from the model organism, Drosophila melanogaster, to the human system. This dissertation explores the morphology analysis of Drosophila larvae at single-cell resolution in static images and image sequences, as well as multiple microscopy imaging modalities. Our contributions are on both computational methods for morphology quantification and analysis of the influence of the anatomical aspect. We develop novel model-and-appearance-based methods for morphology quantification and illustrate their significance in three neuroscience studies. Modeling of the structure and dynamics of neuronal circuits creates understanding about how connectivity patterns are formed within a motor circuit and determining whether the connectivity map of neurons can be deduced by estimations of neuronal morphology. To address this problem, we study both boundary-based and centerline-based approaches for neuron reconstruction in static volumes. Neuronal mechanisms are related to the morphology dynamics; so the patterns of neuronal morphology changes are analyzed along with other aspects. In this case, the relationship between neuronal activity and morphology dynamics is explored to analyze locomotion procedures. Our tracking method models the morphology dynamics in the calcium image sequence designed for detecting neuronal activity. It follows the local-to-global design to handle calcium imaging issues and neuronal movement characteristics. Lastly, modeling the link between structural and functional development depicts the correlation between neuron growth and protein interactions. This requires the morphology analysis of different imaging modalities. It can be solved using the part-wise volume segmentation with artificial templates, the standardized representation of neurons. Our method follows the global-to-local approach to solve both part-wise segmentation and registration across modalities. Our methods address common issues in automated morphology analysis from extracting morphological features to tracking neurons, as well as mapping neurons across imaging modalities. The quantitative analysis delivered by our techniques enables a number of new applications and visualizations for advancing the investigation of phenomena in the nervous system

    Summer 2011 Research Symposium Abstract Book

    Get PDF
    Summer 2011 volume of abstracts for science research projects conducted by Trinity College students

    IST Austria Thesis

    Get PDF
    The human ability to recognize objects in complex scenes has driven research in the computer vision field over couple of decades. This thesis focuses on the object recognition task in images. That is, given the image, we want the computer system to be able to predict the class of the object that appears in the image. A recent successful attempt to bridge semantic understanding of the image perceived by humans and by computers uses attribute-based models. Attributes are semantic properties of the objects shared across different categories, which humans and computers can decide on. To explore the attribute-based models we take a statistical machine learning approach, and address two key learning challenges in view of object recognition task: learning augmented attributes as mid-level discriminative feature representation, and learning with attributes as privileged information. Our main contributions are parametric and non-parametric models and algorithms to solve these frameworks. In the parametric approach, we explore an autoencoder model combined with the large margin nearest neighbor principle for mid-level feature learning, and linear support vector machines for learning with privileged information. In the non-parametric approach, we propose a supervised Indian Buffet Process for automatic augmentation of semantic attributes, and explore the Gaussian Processes classification framework for learning with privileged information. A thorough experimental analysis shows the effectiveness of the proposed models in both parametric and non-parametric views
    • …
    corecore