303 research outputs found

    Phase gadget synthesis for shallow circuits

    Get PDF
    We give an overview of the circuit optimisation methods used by tket, a compiler system for quantum software developed by Cambridge Quantum Computing Ltd. We focus on a novel technique based around phase gadgets, a family of multi-qubit quantum operations which occur naturally in a wide range of quantum circuits of practical interest. The phase gadgets have a simple presentation in the ZX-calculus, which makes it easy to reason about them. Taking advantage of this, we present an efficient method to translate the phase gadgets back to CNOT gates and single qubit operations suitable for execution on a quantum computer with significant reductions in gate count and circuit depth. We demonstrate the effectiveness of these methods on a quantum chemistry benchmarking set based on variational circuits for ground state estimation of small molecules

    Annealing Optimisation of Mixed ZX Phase Circuits

    Full text link
    We present a topology-aware optimisation technique for circuits of mixed ZX phase gadgets, based on conjugation by CX gates and simulated annealing.Comment: In Proceedings QPL 2022, arXiv:2311.0837

    Constructing quantum circuits with global gates

    Get PDF
    There are various gate sets that can be used to describe a quantum computation. A particularly popular gate set in the literature on quantum computing consists of arbitrary single-qubit gates and 2-qubit CNOT gates. A CNOT gate is however not always the natural multi-qubit interaction that can be implemented on a given physical quantum computer, necessitating a compilation step that transforms these CNOT gates to the native gate set. A particularly interesting case where compilation is necessary is for ion trap quantum computers, where the natural entangling operation can act on more than 2 qubits and can even act globally on all qubits at once. This calls for an entirely different approach to constructing efficient circuits. In this paper we study the problem of converting a given circuit that uses 2-qubit gates to one that uses global gates. Our three main contributions are as follows. First, we find an efficient algorithm for transforming an arbitrary circuit consisting of Clifford gates and arbitrary phase gates into a circuit consisting of single-qubit gates and a number of global interactions proportional to the number of non-Clifford phases present in the original circuit. Second, we find a general strategy to transform a global gate that targets all qubits into one that targets only a subset of the qubits. This approach scales linearly with the number of qubits that are not targeted, in contrast to the exponential scaling reported in (Maslov & Nam, N. J. Phys. 2018). Third, we improve on the number of global gates required to synthesise an arbitrary n-qubit Clifford circuit from the 12n-18 reported in (Maslov & Nam, N. J. Phys. 2018) to 6n-8.Comment: 13 pages. v2: added some more figures and fixed a number of (mathematical) typo

    Building Qutrit Diagonal Gates from Phase Gadgets

    Full text link
    Phase gadgets have proved to be an indispensable tool for reasoning about ZX-diagrams, being used in optimisation and simulation of quantum circuits and the theory of measurement-based quantum computation. In this paper we study phase gadgets for qutrits. We present the flexsymmetric variant of the original qutrit ZX-calculus, which allows for rewriting that is closer in spirit to the original (qubit) ZX-calculus. In this calculus phase gadgets look as you would expect, but there are non-trivial differences in their properties. We devise new qutrit-specific tricks to extend the graphical Fourier theory of qubits, resulting in a translation between the 'additive' phase gadgets and a 'multiplicative' counterpart we dub phase multipliers. This enables us to generalise the qubit notion of multiple-control to qutrits in two ways. The first type is controlling on a single tritstring, while the second type applies the gate a number of times equal to the tritwise multiplication modulo 3 of the control qutrits.We show how both types of control can be implemented for any qutrit Z or X phase gate, ancilla-free, and using only Clifford and phase gates. The first requires a polynomial number of gates and exponentially small phases, while the second requires an exponential number of gates, but constant sized phases. This is interesting, because such a construction is not possible in the qubit setting. As an application of these results we find a construction for emulating arbitrary qubit diagonal unitaries, and specifically find an ancilla-free emulation for the qubit CCZ gate that only requires three single-qutrit non-Clifford gates, provably lower than the four T gates needed for qubits with ancilla.Comment: In Proceedings QPL 2022, arXiv:2311.0837

    Non-stabilizerness and entanglement from cat-state injection

    Full text link
    Recently, cat states have been used to heuristically improve the runtime of a classical simulator of quantum circuits based on the diagrammatic ZX-calculus. Here we investigate the use of cat-state injection within the quantum circuit model. We explore a family of cat states, ∣catm∗>\left| \mathrm{cat}_m^* \right>, and describe circuit gadgets using them to concurrently inject non-stabilizerness (also known as magic) and entanglement into any quantum circuit. We provide numerical evidence that cat-state injection does not lead to speed-up in classical simulation. On the other hand, we show that our gadgets can be used to widen the scope of compelling applications of cat states. Specifically, we show how to leverage them to achieve savings in the number of injected qubits, and also to induce scrambling dynamics in otherwise non-entangling Clifford circuits in a controlled manner.Comment: 20 pages, 5 figure

    The Qudit ZH-Calculus: Generalised Toffoli+Hadamard and Universality

    Full text link
    We introduce the qudit ZH-calculus and show how to generalise all the phase-free qubit rules to qudits. We prove that for prime dimensions d, the phase-free qudit ZH-calculus is universal for matrices over the ring Z[e^2(pi)i/d]. For qubits, there is a strong connection between phase-free ZH-diagrams and Toffoli+Hadamard circuits, a computationally universal fragment of quantum circuits. We generalise this connection to qudits, by finding that the two-qudit |0>-controlled X gate can be used to construct all classical reversible qudit logic circuits in any odd qudit dimension, which for qubits requires the three-qubit Toffoli gate. We prove that our construction is asymptotically optimal up to a logarithmic term. Twenty years after the celebrated result by Shi proving universality of Toffoli+Hadamard for qubits, we prove that circuits of |0>-controlled X and Hadamard gates are approximately universal for qudit quantum computing for any odd prime d, and moreover that phase-free ZH-diagrams correspond precisely to such circuits allowing post-selections.Comment: In Proceedings QPL 2023, arXiv:2308.1548

    t|ket> : A retargetable compiler for NISQ devices

    Get PDF
    We present t|ket>, a quantum software development platform produced by Cambridge Quantum Computing Ltd. The heart of t|ket> is a language-agnostic optimising compiler designed to generate code for a variety of NISQ devices, which has several features designed to minimise the influence of device error. The compiler has been extensively benchmarked and outperforms most competitors in terms of circuit optimisation and qubit routing

    Diagrammatic Analysis for Parameterized Quantum Circuits

    Full text link
    Diagrammatic representations of quantum algorithms and circuits offer novel approaches to their design and analysis. In this work, we describe extensions of the ZX-calculus especially suitable for parameterized quantum circuits, in particular for computing observable expectation values as functions of or for fixed parameters, which are important algorithmic quantities in a variety of applications ranging from combinatorial optimization to quantum chemistry. We provide several new ZX-diagram rewrite rules and generalizations for this setting. In particular, we give formal rules for dealing with linear combinations of ZX-diagrams, where the relative complex-valued scale factors of each diagram must be kept track of, in contrast to most previously studied single-diagram realizations where these coefficients can be effectively ignored. This allows us to directly import a number useful relations from the operator analysis to ZX-calculus setting, including causal cone and quantum gate commutation rules. We demonstrate that the diagrammatic approach offers useful insights into algorithm structure and performance by considering several ans\"atze from the literature including realizations of hardware-efficient ans\"atze and QAOA. We find that by employing a diagrammatic representation, calculations across different ans\"atze can become more intuitive and potentially easier approach systematically than by alternative means. Finally, we outline how diagrammatic approaches may aid in the design and study of new and more effective quantum circuit ans\"atze
    • …
    corecore