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We give an overview of the circuit optimisation methods used by t|ket〉, a compiler system for
quantum software developed by Cambridge Quantum Computing Ltd. We focus on a novel
technique based around phase gadgets, a family of multi-qubit quantum operations which
occur naturally in a wide range of quantum circuits of practical interest. The phase gadgets
have a simple presentation in the zx-calculus, which makes it easy to reason about them.
Taking advantage of this, we present an efficient method to translate the phase gadgets back
to ∧X gates and single qubit operations suitable for execution on a quantum computer with
significant reductions in gate count and circuit depth. We demonstrate the effectiveness of
these methods on a quantum chemistry benchmarking set based on variational circuits for
ground state estimation of small molecules.

1 Introduction

Until fully fault-tolerant quantum computers are available, we must live with the so-called Noisy
Intermediate-Scale Quantum (NISQ) devices and the severe restrictions which they impose on
the circuits that can be run. Few qubits are available, but limited coherence time and gate
fidelity also limit the depth of circuits which can complete before being overwhelmed by errors.
Automated circuit optimisation techniques are therefore essential to extract the maximum value
from these devices, and such optimisation routines are becoming a standard part of compilation
frameworks for quantum software [27].

In this paper we give an overview of some circuit optimisation methods used in the t|ket〉
retargetable compiler platform 1. t|ket〉 can generate circuits which are executable on different
quantum devices, solving the architectural constraints [16], and translating to the required gate
set, whilst minimising the gate count and circuit depth. It is compatible with many common
quantum software stacks, with current support for the Qiskit [21], Cirq [31], and PyQuil [29]
frameworks.

Much work on circuit optimisation focuses on reducing T -count [2, 8, 20, 24], a metric of some
importance when considering fault-tolerant quantum computation. However, since we consider
raw physical circuits, the metrics of interest for us are the total circuit depth and the number of
two-qubit gates, since minimising these parameters serves as a good proxy for minimising total
error rate in the circuit. The novel contribution is a new technique for circuit optimisation by
∗ross.duncan@strath.ac.uk
†will.simmons@cambridgequantum.com
1t|ket〉 can be installed as a python module via PyPI: https://pypi.org/project/pytket/
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2 Phase Gadget Synthesis for Shallow Circuits

Z(α) ' α X(α) ' α
H ' H

Z ' π X ' π

S ' + V ' +
'

S† ' − V † ' −

Figure 1: Common circuit gates and their representations in the scalar-free zx-calculus

exploiting symmetric structures for exponentials of Pauli strings, called Pauli gadgets, derived
using phase gadget structures in the zx-calculus. Pauli gadgets occur naturally in quantum
simulations where a Hamiltonian is decomposed into a sum of Pauli tensors and Trotterised
[26]. Hence these techniques are specifically useful to optimise quantum circuits for quantum
chemistry simulations [12].
Notation: In the following, we will mix freely the usual quantum circuit notation and the
scalar-free zx-calculus [13]. For both forms of diagram, we will follow a left-to-right convention.
We will also adopt the same convention for composition of circuits in equations, i.e. C ◦D means
we apply C first, followed by D. A translation of common gates between the two formalisms
is given in Figure 1. A brief introduction to the zx-calculus is found in [19]; for a complete
treatment see [14]. For reasons of space we omit the zx-calculus inference rules, however we use
the complete set of Vilmart [33].
Remark: Late during the preparation of this paper, it came to our attention that Litinski [25]
has defined a notation for Pauli product operators essentially equivalent to the Pauli gadgets of
Section 4. Since that work concerns computing under a surface code, this suggests applications
of our approach beyond the near term quantum devices we focus on here. The use of zx-calculus
for lattice surgery by de Beaudrap and Horsman [7] offers an obvious route.

2 Circuit Optimisations

Circuit optimisation is typically carried out by pattern replacement: recognising a subcircuit of
specific form and replacing it with an equivalent. This is sometimes called peephole optimisation
in analogy to local optimisation techniques in classical compilers; however in the case of quantum
circuits any connected subcircuit can be replaced, including the entire circuit. Usually the
replacement is cheaper with respect to some cost metric, but in a multi-pass optimiser like t|ket〉,
the replacement may enable a more powerful later optimisation pass, rather than improving the
circuit itself, or map the circuit onto a particular gate set supported by the target device.

In t|ket〉, circuits are represented internally as non-planar maps, a generalisation of directed
graphs wherein the incident edges at each vertex are ordered, to admit non-commutative
operations like the ∧X gate. Unlike operation lists or discrete time frames, this representation
preserves only the connectivity of the operations, abstracting away qubit permutations and timing
information. The t|ket〉 optimiser consists of multiple rewriting strategies called passes which
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may be combined to achieve the desired circuit transformation2. The primitive rewriting steps
are computed by the double pushout method [18], although the matching is usually achieved by
a custom search algorithm for efficiency reasons.

Simple examples include merging adjacent rotation gates acting on the same basis, cancelling
operation-inverse pairs, and applying commutation rules. Any sequence of single-qubit operations
may be fused into a single unitary, for which an Euler decomposition can be computed. t|ket〉 has
the possibility to choose which basis of rotations to use for the Euler form – for example ZXZ or
XZX – depending on local context, which can permit more commutations, or easy translation
to a native gate set (for example, ZY Z triples are useful to match the U3 gate supported in the
Qiskit framework [21]).

If the circuit contains a long sequence of gates acting on the same two qubits, the KAK
(Cartan) decomposition [9, 32] may be applied. This gives a canonical form requiring at most
three ∧X gates. Even when arbitrary rotations are permitted, realistic circuits include significant
Clifford subcircuits. In particular, t|ket〉 takes rules from [19] to reduce any pair of ∧X gates
that are separated only by single-qubit Clifford gates. However there is a very wide literature on
Clifford circuits which could be applied here [1, 17, 30]. In the following sections we describe a
novel technique for optimising a new class of multi-qubit subcircuits, called phase gadgets and
Pauli gadgets.

3 Phase Gadgets
In principle, local rewriting of gate sequences is sufficient for any circuit optimisation3. However,
in practice, good results often require manipulation of large-scale structures in the quantum
circuit. Phase gadgets are one such macroscopic structure that is easy to identify within circuits,
easy to synthesise back into a circuit, and have a useful algebra of interactions with one another.
Definition 3.1. The Z-phase gadgets Φn(α) : C⊗n→C⊗n are a family of unitary maps we define
recursively as :

Φ1(α) := Z(α) Φn+1(α) := (∧X⊗1n−1)◦ (11⊗Φn(α))◦ (∧X⊗1n−1)

... Φ
n

+
1(
α

)

...

=
... Φ

n
(α

)

...

Remark 3.2. We could equally define the X-phase gadget as the colour dual of the Z-phase
gadget, and the Y -phase gadget by conjugating the Z-phase gadget with X(π2 ) rotations. Since
we won’t needs these in this paper, we’ll refer to the Z-phase gadget simply as a phase gadget.
Lemma 3.3. In zx-calculus notation we have:

Φn(α) :=
α

...

2 We regret that at the time of writing this feature is not in the publicly available pytket release; it is planned
for a future release.

3This is a consequence of the completeness of the zx-calculus [33].
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Corollary 3.4. We have the following laws for decomposition, commutation, and fusion of phase
gadgets.

α
...

=
α

...

α

β

...

...

...
...

...

...

=

α

β

...

...

...
...

...

...

... α β
... = ... α+β

The decomposition law gives the canonical way to synthesise a quantum circuit corresponding
to a given phase gadget. However, from the zx-calculus form, it’s immediate that phase gadgets
are invariant under permutation of their qubits, giving the compiler a lot of freedom to synthesise
circuits which are amenable to optimisation. As a simple example, the naive ∧X ladder approach,
shown in Figure 2, requires a ∧X-depth of 2(n− 1) to synthesise an n-qubit phase gadget;
replacing this with a balanced tree yields a ∧X depth of 2dlogne. Note that the quantity of ∧X
gates used is still (and always will be) 2(n−1), but we can still obtain benefits with respect to
depth.

α

=
α

Figure 2: Comparing the worst-case and best-case patterns for constructing phase gadgets with
respect to ∧X depth. The left shows a ∧X ladder as produced within the Unitary Coupled
Cluster generator in IBM Qiskit Aqua, and the right is the optimal balanced-tree form used by
t|ket〉.

Further, in the balanced tree form more of the ∧X gates are “exposed” to the rest of the
circuit, and could potentially be eliminated by a later optimisation pass. Note that this form is
not unique, allowing synthesis informed by the circuit context in which the phase gadget occurs.
For example, t|ket〉 aligns the ∧Xs between consecutive phase gadgets whenever possible.
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Trotterised evolution operators, as commonly found in quantum chemistry simulations, have
the general form of a sequence of phase gadgets, separated by a layer of single-qubit Clifford
rotations. For each consecutive pair of gadgets, if the outermost ∧Xs align then they can both be
eliminated, or if there are some intervening Clifford gates then we can use Clifford optimisation
techniques to remove at least one of the ∧Xs.

4 Pauli Gadgets
In the language of matrix exponentials, the phase gadget Φn(2α) corresponds to the operator
e−iαZ

⊗n . A consequence of Corollary 3.4 is that any circuit P consisting entirely of Z-phase
gadgets can be represented succinctly in the form:

P |x1x2 . . .xn〉= e
−i

∑
j
αjfj(x1,x2,...,xn) |x1x2 . . .xn〉 (1)

for some Boolean linear functions fj . For comparison, phase-polynomial circuits C (the class of
circuits that can be built from {∧X,T} [3]) can be represented as:

C |x1x2 . . .xn〉= e
iπ4

∑
j
fj(x1,x2,...,xn) |g(x1,x2, . . . ,xn)〉 (2)

for Boolean linear functions fj and a linear reversible function g. There is already a wide
literature covering phase-polynomials and optimisations with them [2, 4, 27].

The correspondence between phase gadgets and matrix exponentials generalises to exponentials
of any Pauli tensor e−iασ1σ2...σn , by conjugating the phase gadget with approriate Clifford
operators as shown in Figure 3.
Definition 4.1. Let s be a word over the alphabet {X,Y,Z}; then the Pauli gadget P (α,s) is
defined as U(s)◦Φ|s|(α)◦U(s)† where the unitary U(s) is defined by recursion over s:

U(Zs′) = I⊗U(s′) U(Y s′) =X(π2 )⊗U(s′) U(Xs′) =H⊗U(s′)

Definition 4.1 can be easily extended to aribitrary strings over the Paulis (i.e. including the
identity) by adding wires which the phase gadget does not act on. This is illustrated in Figure 3.
Taking advantage of this we’ll generally assume that the Pauli gadget is the full width of the
circuit, although it may not act on every qubit.

In general, Pauli gadgets present difficulties for phase-polynomial-based circuit optimisation
methods, as not all pairs of Pauli evolution operators will commute (for the simplest example,
consider e−iαXe−iβZ 6= e−iγZe−iδX for any non-degenerate choices of angles). We now generalise
the results of the preceding section to consider interactions between Pauli gadgets. The following
is easy to demonstrate using matrix exponentials.
Proposition 4.2. Let P and Q be Pauli tensors, then either (i) e−iαP e−iβQ = e−iβQe−iαP for
all α and β; or (ii) for all αi there exist βi such that

e−iα1P e−iα2Qe−iα3P = e−iβ1Qe−iβ2P e−iβ3Q (4)

Note that the αi and βi are computed as the Euler-angle decompositions of a combined rotation.
Taking P = Z and Q=X, Equation (4) is axiom (EU) of the ZX-calculus [33]4. We will give

4We note that this extremely powerful axiom was first proposed as rule (P) by Coecke and Wang [15].
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e−iαIXY Z = 2α
H H

+ −
= 2α (3)

Figure 3: An example of the correspondence between Pauli evolution operators and phase gadgets.
We introduce this notation on the right for a more succinct graphical representation. The green,
red, and mixed-colour boxes respectively represent the Pauli gadget acting on a qubit in the Z, X,
and Y bases. These are formed by a phase gadget on the qubits (generating all Z interactions),
then optionally conjugating the qubits with Hadamard gates for X, or X(π2 ) gates for Y . We
omit trivial qubits (I) from the diagrammatic representation.

a zx-calculus proof of this theorem for Pauli gadgets, with an intermediate state giving a very
compact circuit representation for any consecutive pair of Pauli gadgets.

The following lemmas have elementary proofs.

Lemma 4.3. The commutation rules for Pauli gadgets and single-qubit Clifford gates, shown in
Figure 4 are derivable in the zx-calculus.

Lemma 4.4. The commutation rules for Pauli gadgets and ∧X gates, shown in Figure 5 are
derivable in the zx-calculus.

Note that Figures 4 and 5 are not exhaustive, but they suffice for present purposes.
It will be useful to define some notation for working with strings of Paulis. For strings s and

t we write their concatenation as st; si denotes the ith symbol of s; and |s| denotes the length of
s. A string consisting entirely of I is called trivial. We say that t is a substring of s when, for all
i, si 6= ti implies ti = I; if in addition s 6= t and t is non-trivial then t is proper substring. We
write t•s for the pointwise multiplication of Pauli strings (up to global phase); in particular if t
is a substring of s then (t• s)i = I iff si = ti and is si otherwise. The intersection of strings s
and t is the set of indices i satisfying si 6= I and ti 6= I.

Lemma 4.5. Let st be a Pauli string; then for all α there exists a Clifford unitary U acting on
|s|+ 1 qubits such that

P (α,st) = (U ⊗ I|t−1|)◦ (I|s|⊗P (α,t))◦ (U †⊗ I|t−1|)

... P
(α
,s
t)

...

...
...

=
...

P
(α
,t

)

...

... U
...

...U†

Further, U can be constructed in a canonical form which depends only on the string s.

Proof. For simplicity of exposition we assume si, tj 6= I for all i and j. We construct U in two
layers. The first layer of gates corresponds to U(s) from Definition 4.1. By 4.3, these gates can
pass through P (α,Z |s|t) and cancel with their inverses from U † to give P (α,st). Similarly, a ∧X
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...

π

α = ...

π

α

...

π

α = ...

π

−α

...

π

α = ...

π

−α

...

π

α = ...

π

−α

...

π

α = ...

π

α

...

π

α = ...

π

−α

...

H

α = ...

H

α

...

H

α = ...

H

α

...

H

α = ...

H

−α

...

+
α = ...

+
α

...

+
α = ...

+
−α

...

+
α = ...

+
α

...

+
α = ...

+
α

...

+
α = ...

+
α

...

+
α = ...

+
−α

Figure 4: Rules for passing Clifford gates through Pauli gadgets.

... α

=
... α

... α

=
... α

... α

=
... α

... α

=
... α

... α

=
... α

... α

=
... α

Figure 5: Rules for passing ∧X gates through Pauli gadgets.
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gate on the first two qubits can pass through I⊗P (α,Z |s|−1t) to give P (α,st) by Lemma 4.4.
The second layer of U is a chain of ∧X gates that repeats this to convert P (α,t) to P (α,Z |s|t).
The final ∧X in this chain acts has its target on the (|s|+ 1)th qubit, corresponding to t1. If
t1 =X, then the ∧X will commute through P (α,t) without extending it, so additional single
qubit gates may be required around the ∧X to map t1 to Z and back. Composing these layers
gives a U that can pass through I|s|⊗P (α,t) and cancel with U † to leave P (α,st).

Remark 4.6. As shown in 2, the ∧X part of U may be more efficiently constructed as a balanced
tree, or some other configuration which allows later gate cancellation.

Corollary 4.7. Let t be a proper substring of s; then there exists a unitary U and a permutation
π such that

P (α,s) = π ◦ (U ⊗ I|s|−|t|−1)◦π† ◦P (α,t•s)◦π† ◦ (U †⊗ I|s|−|t|−1)◦π

Corollary 4.8. Let s be a Pauli string; then for all α and β:

P (α,s)◦P (β,s) = P (α+β,s)

Lemma 4.9. Let s and t be Pauli strings; then there exists a Clifford unitary U such that

P (α,s)◦P (β,t) = U ◦P (α,s′)◦P (β,t′)◦U †

where s′ and t′ are Pauli strings with intersection at most 1.

Proof. Let r denote the maximum common substring of s and t. Then by Corollary 4.7 we have

P (α,s)◦P (β,t) = Ur ◦P (α,r •s)◦U †r ◦Ur ◦P (β,r • t)◦U †r = Ur ◦P (α,r •s)◦P (β,r • t)◦U †r (5)

hence we will assume that s and t have no non-trivial common substring. Now suppose that
si = Y and ti =X. Applying Lemma 4.3 we can replace si with a Z node by conjugating with
X(π/2); since X rotations commute with X nodes, this unitary can move outside the two gadgets.

α...β...
= α...β...

+ −
= α...β...

+ −
(6)

The pairing of Y and Z can be treated the same way. Hence we can assume that the symbol Y
does not occur in the intersection of s and t.

Now we proceed by induction on the size of the intersection. If the intersection is size 0 or 1
then we have the result. Otherwise consider two non-trivial qubits i and j in the intersection.
Suppose si = sj =X and ti = tj =Z; then by Lemma 4.4 we can reduce the size of the intersection
by two as shown below:

α...β...

=
α...β...

=
α...β...

(7)
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The only other case to be considered is when si = tj =X and sj = ti = Z, in which case Lemma
4.3 gives the following reduction.

α...β...

=
α...β...

H H

=
α...β...

H H

(8)

Hence the size of the intersection can be reduced to less than two.

Theorem 4.10. Let s and t be strings of Paulis. Either the corresponding gadgets commute:

∀α,β P (α,s)◦P (β,t) = P (β,t)◦P (α,s)

or they satisfy the Euler equation:

∀αi,∃βi P (α1,s)◦P (α2, t)◦P (α3,s) = P (β1, t)◦P (β2,s)◦P (β3, t)

Proof. By Lemma 4.9, we have U , s′ and t′ such that

P (α,s)◦P (β,t) = U ◦P (α,s′)◦P (β,t′)◦U †

Where s′ and t′ have at most intersection 1. If their intersection is trivial, or if both gadgets act
on their common qubit in the same basis (Corollary 4.8), then they commute, from which we
have

U ◦P (α,s′)◦P (β,t′)◦U † = U ◦P (β,t′)◦P (α,s′)◦U † = P (β,t)◦P (α,s) (9)

Otherwise the gadgets need not commute, but the Euler equation holds. Without loss of generality
assume that s is all Zs and t is all Xs. In the case where |s|= |t|= 2, we continue as follows:

α1

α2

α3
= α1 α3

α2

= α1 α3
α2

= α1 α3α2

= α1 α3α2 = β1 β3β2

=
β1

β2

β3

(10)
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This applies Lemma 4.4 to decompose Pauli gadgets and commute ∧X gates, followed by the
(EU) rule and essentially reversing the procedure. This generalises to larger s and t by applying
Lemma 4.5.

α1

α2

α3

...

...
...

=

U

V

α1

α2

U† U

α3

U†

V †
...

...

...
...

=

...

...

U

V

β1

β2

β3

U†

V †

...

...

=

β1

β2

...

...

β3
...

(11)

Synthesising a Pauli gadget P (α,s) in isolation requires 2(|s|−1) ∧X gates, hence P (α,s)◦
P (β,t) would usually require 2(|s|+ |t|−2) ∧X gates in total. Applying Equation 5 will reduce
the total cost by 2 for each qubit in the maximum common substring. Equation 7 uses two gates
to reduce the gadgets by 1 qubit each, giving a net saving of 2 ∧X gates per application. This
reduces the total cost to 2(|s|+ |t|− |r|−b |u|2 c−2) ∧X gates where r is the maximum common
substring of s and t, and u is the subset of the intersection of s and t that is not in r. In the
case where s and t act on the same set of qubits and |s • t| ≤ 2, we can synthesise the pair
P (α,s) ◦P (β,t) using the same number of ∧Xs as just P (α,s). Performance with respect to
depth is harder to assess analytically and will be left for future work.

5 Optimisation Example

The following example is a small region of a Unitary Coupled Cluster ansatz for analysing the
ground state energy of H2. The parameters α and β are optimised by some variational method.

X(−π2 )

X(−π2 )

X(−π2 )

HZ(β)

X(π2 )

X(π2 )

X(π2 )

H

H

X(−π2 )

X(−π2 )

X(−π2 )Z(α)

H

X(π2 )

X(π2 )

X(π2 )

· · ·

The ∧X ladders in this circuit correspond to phase gadgets, so we start by detecting these and
resynthesising them optimally to reduce the depth and expose more of the ∧Xs to the rest of
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the circuit.

X(−π2 )

X(−π2 )

X(−π2 )

H

Z(β)

X(π2 )

X(π2 )

X(π2 )

H

H

X(−π2 )

X(−π2 )

X(−π2 )

Z(α)

H

X(π2 )

X(π2 )

X(π2 )

· · ·

Between the parametrised gates, there is a Clifford subcircuit, featuring some aligned ∧X pairs.
The commutation and Clifford optimisation rules can further reduce the number of ∧Xs here.

X(−π2 )

X(−π2 )

X(−π2 )

H

Z(β)Z(α)

H

X(π2 )

X(π2 )

X(π2 )

· · ·
Z(π2 )

X(π2 )

H

Z(−π2 )

Z H

X(π2 )

X

Between phase gadget resynthesis and Clifford optimisations, we have successfully reduced
the two-qubit gate count of this circuit from 12 to 10, and the depth with respect to two-qubit
gates from 12 to 7. However, we could have noted that the original circuit corresponds to the
operation P (α,XY Y Y )◦P (β,Y Y XY ). These Pauli gadgets commute according to Theorem
4.10. Following the proof, we can reduce the Pauli gadgets by stripping away the common qubits
(where they both act on the X-basis) as in Equation 5, and then reducing the remaining pair to
simple rotations on different qubits using Equation 7. This yields an equivalent circuit using 6
two-qubit gates which can be arranged into only 4 layers.

X(π2 )

X(π2 )

H

X(π2 )

Z(π2 )

Z(π2 )

Z(−π2 ) X(β) Z(π2 )

Z(−π2 )

Z(−π2 ) X(−π2 )

X(−π2 )

X(−π2 )

HZ(α)

6 Results
Here we present some empirical results on the performance of these optimisation techniques
on realistic quantum circuits. We compared the effectiveness of a few optimising compilers at
reducing the number of two-qubit interactions (∧X or equivalent) in a circuit. For t|ket〉, we
identified Pauli gadgets within the circuit and applied the aforementioned method for efficient
pairwise synthesis, followed by Clifford subcircuit optimisation.

The test set used here consists of a small selection of circuits for Quantum Computational
Chemistry. They correspond to variational circuits for estimating the ground state of small
molecules (H2, LiH, CH2, or C2H4) by the Unitary Coupled Cluster approach [5, 6] using some
choice of qubit mapping (Jordan-Wigner [22], Parity mapping [10], or Bravyi-Kitaev[11]) and
chemical basis function (sto-3g, 6-31g, cc-pvDZ, or cc-pvTZ). The bulk of each circuit is generated
by Trotterising some exponentiated operator, meaning many phase/Pauli gadgets will naturally



12 Phase Gadget Synthesis for Shallow Circuits

Qiskit 0.10.1 PyZX CQC’s t|ket〉
0.2

Name gin din gout dout gout dout gout dout
H2_P_sto3g 38 36 34 32 39 37 24 18
H2_BK_sto3g 38 38 36 36 43 40 25 23
H2_JW_sto3g 56 52 52 48 42 37 24 22
H2_JW_631g 768 744 624 600 467 392 349 324
LiH_JW_sto3g 8064 7616 6176 5776 6872 5579 3525 3173
LiH_P_sto3g 7640 7603 6222 6185 6838 5543 3992 3460
LiH_BK_sto3g 8680 8637 7402 7395 6577 5491 4226 4002
H2_JW_ccpvdz 14616 14436 10404 10224 8527 6105 5608 5396
CH2_JW_sto3g 21072 19749 15600 14565 18380 14995 9074 8064
LiH_JW_631g 69144 65676 49776 46596 58647 43835 27221 24462
H2_JW_ccpvtz 341280 339768 224640 223128 276691 151027 115376 113980
LiH_JW_ccpvdz 407320 388620 282608 264996 371847 229491 145714 134079
C2H4_JW_sto3g 640768 596857 438784 408313 - - 248945 216796

Table 1: Comparison of two-qubit gate count and depth for Quantum Computational Chemistry
circuits achieved by quantum compilers. Each circuit was generated using a Unitary Coupled
Cluster ansatz for ground state estimation of small molecules. The names of circuits indicate
the molecule (H2, LiH, CH2, or C2H4), the qubit mapping (Jordan-Wigner, Parity mapping, or
Bravyi-Kitaev), and chemical basis function (sto-3g, 6-31g, cc-pvDZ, or cc-pvTZ). gin/din denotes
the two-qubit gate count/depth for the original circuits, and gout/dout are the corresponding
quantities for the optimised circuits from each compiler. Values correspond to the Pauli gadget
optimisation pass in t|ket〉, PyZX’s full_reduce procedure, and compilation with optimisation
level 1 on Qiskit (at the time of writing, higher levels were found to not preserve the semantics of
the circuit). Systems were allowed up to 10 hours of compute time for each circuit with timeouts
indicated by blank cells.

occur. These circuits were all generated using the Qiskit Chemistry package [21] and the QASM
files can be found online 5.

All of the implementations suffered from runtime scaling issues, meaning results for some
of the larger circuits were reasonably unobtainable. Overall, t|ket〉 gained an average reduction
of 54.5% in ∧X count of the circuits, outperforming the 21.3% from Qiskit and 16.3% from
PyZX. We find similar savings with respect to two-qubit gate depth, where t|ket〉 has an average
reduction of 57.7% (21.8% for Qiskit, 30.8% for PyZX). This percentage is likely to improve
as we start to look at even larger examples as the phase gadget structures are reduced from
linearly-scaling ∧X ladders to the logarithmically-scaling balanced trees. We anticipate that
incorporating the reduced form for adjacent Pauli gadgets will further cut down the ∧X count,
especially given that rotations in the Unitary Coupled Cluster ansatz come from annihilation
and creation operators, each generating a pair of rotations with very similar Pauli strings.

These empirical results were to compare pure circuit optimisation only, so no architectural
constraints were imposed. It is left for future work to analyse how these techniques affect the

5QASM files and the generating python script are available at: https://github.com/CQCL/pytket/tree/
master/examples/benchmarking/ChemistrySet

https://github.com/CQCL/pytket/tree/master/examples/benchmarking/ChemistrySet
https://github.com/CQCL/pytket/tree/master/examples/benchmarking/ChemistrySet
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ease of routing the circuit to conform to a given qubit connectivity map. This is non-trivial for
the more macroscopic changes such as identifying and resynthesising phase gadgets which can
change the interaction graph from a simple line to a tree. Recent work using Steiner trees [23, 28]
could be useful for synthesising individual phase gadgets in an architecturally-aware manner.

As the quality of physical devices continues to improve, we can look forward to a future of
fault-tolerant quantum computing. There has already been work making use of the structures
discussed here in the domain of Clifford + T circuits. Notably, phase gadgets have found use
recently for reducing the T-count of circuits [24]. Another recent paper [25] presents ways to
usefully synthesise Clifford + T circuits in the realm of lattice surgery which use representations
of rotations that are equivalent Pauli gadgets.
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A Proof for Lemma 4.3

Proof. A number of the rules follow from the ability to commute green vertices through Z
components of Pauli gadgets and red vertices through X components using the spider fusion rule
(S) and the colour-change rule (H) of the zx-calculus.

...

β

α
=
(3) ...

β

α
=
(S) ...

β

α
=
(3) ...

β

α
(12)

...

β

α
=
(3) ...

β

α

HH =
(H)

...

β

α

H

=
(S)

...

β

α

H =
(H),(3) ...

β

α

(13)

For the remaining π-phase properties, we will also need to use the π-copy/elimination rule
(K1) and the phase-inversion rule (K2).

...

π

α
=
(3) ...

π

α
=

(K1) ...

π

α

π =
(S) ...

π

απ

=
(K2) ...

π

−α π
=

(K1) ...

π

−α
=

(S),(3) ...

π

−α

(14)

The rest of the rules for passing single qubit Clifford gates through Pauli gadgets can be
obtained straighforwardly using these, as in the following example.

...

+
α

=
(3) ...

+
α

H H =
(HD),(EU) ...

+
α

H+ π =
(14) ...

+
−α

H+ π

=
(12) ...

+
−α

H+ π =
(HD),(EU),(S),(I) ...

+
−α

+ − =
(3) ...

+
−α

(15)
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B Proof for Lemma 4.4
Proof. The control of a ∧X can commute through a Z component of a Pauli gadget using just
the spider fusion rule (S) of the zx-calculus.

... α

=
(3)

... α

=
(S)

... α

=
(3)

... α

(16)

To prove the extension of Pauli gadget from a X component, we remove Hadamard gates
from the path with the colour-change rule (H) and introduce a pair of ∧Xs using the identity (I)
and Hopf (Hopf) rules. The rest follows from the bialgebra rule (B) and tidying up.

... α

=
(3)

... α

H H
=
(H)

... α

H

=
(I),(Hopf)

... α

H

=
(S)

... α

H

=
(B)

... α

H

=
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... α

H

H

H

H
=
(3)

... α

(17)

For the equivelent rule for Y , we spawn additional green phase vertices to allow us to introduce
Hadamard gates via the Hadamard decomposition rule (HD), and reduce it to the X case.

... α

=
(3)

...

+ −
α

=
(I),(S)

...

+ −
α

− + + − − +

=
(HD)

...

H H

α

− +
=
(3)

... α

+ −
=

(17)
... α

− +

=
(4.3)

... α

− +
=
(S)

... α

(18)

The remaining rules follow similarly.
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