4 research outputs found

    Phase Estimation and Phase Ambiguity Resolution by Message Passing

    Full text link
    Several code-aided algorithms for phase estimation have recently been proposed. While some of them are ad-hoc, others are derived in a systematic way. The latter can be divided into two different classes: phase estimators derived from the expectation-maximization (EM) principle and estimators that are approximations of the sum-product message passing algorithm. In this paper, the main differences and similarities between these two classes of phase estimation algorithms are outlined and their performance and complexity is compared. Furthermore, an alternative criterion for phase ambiguity resolution is presented and compared to an EM based approach proposed earlier

    Code-aided Maximum-likelihood Ambiguity Resolution Through Free-energy Minimization

    Get PDF
    International audienceIn digital communication receivers, ambiguities in terms of timing and phase need to be resolved prior to data detection. In the presence of powerful error-correcting codes, which operate in low signal to noise ratios (SNR), long training sequences are needed to achieve good performance. In this contribution, we develop a new class of code-aided ambiguity resolution algorithms, which require no training sequence and achieve good performance with reasonable complexity. In particular, we focus on algorithms that compute the maximum-likelihood (ML) solution (exactly or in good approximation) with a tractable complexity, using a factor-graph representation. The complexity of the proposed algorithm is discussed, and reduced complexity variations, including stopping criteria and sequential implementation, are developed

    Code-Aided Maximum-Likelihood Ambiguity Resolution Through Free-Energy Minimization

    Full text link

    Phase Estimation and Phase Ambiguity Resolution by Message Passing

    No full text
    Abstract. Several code-aided algorithms for phase estimation have recently been proposed. While some of them are ad-hoc, others are derived in a systematic way. The latter can be divided into two different classes: phase estimators derived from the expectation-maximization (EM) principle and estimators that are approximations of the sum-product message passing algorithm. In this paper, the main differences and similarities between these two classes of phase estimation algorithms are outlined and their performance and complexity is compared. Furthermore, an alternative criterion for phase ambiguity resolution is presented and compared to an EM based approach proposed earlier.
    corecore