12 research outputs found

    Ground-State Phase Diagram of the 1D t-J model

    Full text link
    We examine the ground-state phase diagram of the t-J model in one dimension by means of the Density Matrix Renormalization Group. This model is characterized by a rich phase diagram as a function of the exchange interaction J and the density n, displaying Luttinger-liquid (LL) behavior both of repulsive and attractive (i.e. superconducting) nature, a spin-gap phase, and phase-separation. The phase boundaries separating the repulsive from the attractive LL phase as J is increased, and also the boundaries of the spin-gap region at low densities, and phase-separation at even larger J, are determined on the basis of correlation functions and energy-gaps. In particular, we shed light on a contradiction between variational and renormalization-group (RG) results about the extent of the spin-gap phase, that results larger than the variational but smaller than the RG one. Furthermore, we show that the spin gap can reach a sizable value (~ 0.1 t) at low enough filling, such that preformed pairs should be observable at temperatures below these energy scales. No evidence for a phase with clustering of more than two particles is found on approaching phase separation.Comment: 14 page

    Variational Study of the Spin-Gap Phase of the One-Dimensional t-J Model

    Full text link
    We propose a correlated spin-singlet-pairs wave function to describe the spin-gap phase of the one-dimensional tJt-J model at low density. Adding a Jastrow factor with a variational parameter, ν\nu, first introduced by Hellberg and Mele, is shown to correctly describe the long-range behavior expected for the Luther-Emery phase. Using the variational Monte Carlo method we establish a relation between ν\nu and the Luttinger exponent KρK_\rho, Kρ=12νK_\rho=\frac{1}{2\nu}.Comment: 4 pages (LaTex), 3 figures attache

    Renormalization group analysis of the spin-gap phase in the one-dimensional t-J model

    Full text link
    We study the spin-gap phase in the one-dimensional t-J model, assuming that it is caused by the backward scattering process. Based on the renormalization group analysis and symmetry, we can determine the transition point between the Tomonaga-Luttinger liquid and the spin-gap phases, by the level crossing of the singlet and the triplet excitations. In contrast to the previous works, the obtained spin-gap region is unexpectedly large. We also check that the universality class of the transition belongs to the k=1k=1 SU(2) Wess-Zumino-Witten model.Comment: 4 pages(RevTeX), 5 figures(EPS), TITCMT-97-10, to appear in Phys. Rev. Let

    On the Liaison Between Superconductivity and Phase Separation

    Full text link
    Models of strongly correlated electrons that tend to phase separate are studied including a long-range 1/r repulsive interaction. It is observed that charge-density-wave states become stable as the strength of the 1/r term, Vcoul{\rm V_{coul}}, is increased. Due to this effect, the domain of stability of the superconducting phases that appear near phase separation at Vcoul=0{\rm V_{coul} = 0} is not enlarged by a 1/r interaction as naively expected. Nevertheless, superconductivity exists in a wide region of parameter space, even if phase separation is suppressed. Our results have implications for some theories of the cuprates.Comment: 11 pages, 9 postscript figures are appende

    Variational state based on the Bethe ansatz solution and a correlated singlet liquid state in the one-dimensional t-J model

    Full text link
    The one-dimensional t-J model is investigated by the variational Monte Carlo method. A variational wave function based on the Bethe ansatz solution is newly proposed, where the spin-charge separation is realized, and a long-range correlation factor of Jastrow-type is included. In most regions of the phase diagram, this wave function provides an excellent description of the ground-state properties characterized as a Tomonaga-Luttinger liquid; Both of the amplitude and exponent of correlation functions are correctly reproduced. For the spin-gap phase, another trial state of correlated singlet pairs with a Jastrow factor is introduced. This wave function shows generalized Luther-Emery liquid behavior, exhibiting enhanced superconducting correlations and exponential decay of the spin correlation function. Using these two variational wave functions, the whole phase diagram is determined. In addition, relations between the correlation exponent and variational parameters in the trial functions are derived.Comment: REVTeX 3.0, 27 pages. 7 figures available upon request ([email protected]). To be published in Phys. Rev. B 5

    Coupling to optical phonons in the one-dimensional t-J model: Effects on superconducting fluctuations and phase separation

    Full text link
    The one-dimensional (1D) tt-JJ Holstein model is studied by exact diagonalization of finite rings using a variational approximation for the phonon states. Due to renormalization effects induced by the phonons, for intermediate electron-phonon coupling, the phase separation (PS) boundary, and with it the region of dominating superconducting fluctuations is shifted substantially to smaller values of J/tJ/t as compared to the pure tt-JJ model. Superconducting correlations are weakened through charge density wave interactions mediated by the phonons. Possible consequences for the high TcT_c oxides are discussed.Comment: 4 pages, Latex2

    Mean-field renormalization group theory of the t-J model

    Get PDF
    Ankara : The Department of Physics and the Institute of Engineering and Science of Bilkent University, 2002.Thesis (Master's) -- Bilkent University, 2002.Includes bibliographical references leaves 54.The quantum nature of the high temperature superconductivity models makes analytical approaches to these systems almost impossible to implement. In this thesis, a computational study of the one and two dimensional t − J models that combines mean-field treatments with renormalization group techniques will be presented. This allows one to deal with the noncommutations of the operators at two consecutive sites of the lattices on which these models are defined. The resulting phase diagram for the 1D t − J model reveals an antiferromagnetic ground state, which may, upon doping with increasing temperature, show striped formation that is seen in the high-Tc cuprates. The qualitative features of the phase diagram of the 2D case is also presented, which reveals a phase transition between the disordered and antiferomagnetically ordered phases.Şen, CengizM.S
    corecore