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ABSTRACT

MEAN-FIELD RENORMALIZATION GROUP THEORY
OF THE t-J MODEL

Cengiz Şen

M.S. in Physics

Supervisor: Prof. Dr. M. Cemal Yalabık

July, 2002

The quantum nature of the high temperature superconductivity models makes

analytical approaches to these systems almost impossible to implement. In this

thesis, a computational study of the one and two dimensional t− J models that

combines mean-field treatments with renormalization group techniques will be

presented. This allows one to deal with the noncommutations of the operators

at two consecutive sites of the lattices on which these models are defined. The

resulting phase diagram for the 1D t − J model reveals an antiferromagnetic

ground state, which may, upon doping with increasing temperature, show striped

formation that is seen in the high-Tc cuprates. The qualitative features of the

phase diagram of the 2D case is also presented, which reveals a phase transition

between the disordered and antiferomagnetically ordered phases.

Keywords: high-temperature superconductivity, t − J model, Hubbard model,

renormalization group theory, mean-field theory, hard-spin mean-field theory.
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ÖZET

t− J MODELİNİN ORTALAMA ALAN
RENORMALİZASYON GRUP TEORİSİ

Cengiz Şen

Fizik, Yüksek Lisans

Tez Yöneticisi: Prof. Dr. M. Cemal Yalabık

Temmuz, 2002

Yüksek sıcaklık süperiletkenliği modellerinin kuvantum doğası, bu sistemlere

karşı analitik yaklaşımları neredeyse olanaksız kılmaktadır. Bu tezde, bir ve

iki boyutlu t − J modellerinin, ortalama alan yaklaşımlarıyla renormalizasyon

grup tekniklerini birleştiren sayısal bir çalışması sunulacaktır. Bu, modellerin

tanımlandığı örgünün iki ardışık bölgesindeki operatörlerin yer değiştirileme-

mesini ele almayı mümkün kılmaktadır. Bir boyutlu t − J modelinin ortaya

çıkan faz diyagramı, artan sıcaklıkla katkılama ile antiferromagnetik bazal du-

rumun yüksek-Tc materyallerinde görülen çizgili bir dönüşüm gösterebileceğini

ortaya koymaktadır. İki boyutlu durumun faz diyagramının antiferromagnetik

düzenli ve düzensiz fazlar arasındaki faz geçişini ortaya koyan kalitatif özellikleri

de sunulmaktadır.

Anahtar kelimeler : yüksek sıcaklık süperiletkenliği, t− J modeli, Hubbard mod-

eli, renormalizasyon grup teorisi, ortalama-alan teorisi, sert-spin ortalama-alan

teorisi.
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Chapter 1

INTRODUCTION

The announcement of the first high-Tc cuprate in 1986 by J. G. Bednorz and

K. A. Muller[1] at a temperature of 30 K opened a new era in superconductiv-

ity. Although superconductivity is known since 1913 from a series of experiments

performed by Heike Kamerlingh Onnes[2], the new superconductors were quite

different than the old ones, mainly because these superconductors were oxides

rather than metals. At first the results seemed unexpected, but the confirmation

later came with even higher transition temperatures by Takagi et. al.[3] in 1987.

This work made it possible to use inexpensive and easily available nitrogen instead

of expensive and complex helium cooling systems in order to achieve superconduc-

tivity. Afterwards, the transition temperature has risen dramatically, examples

are Y Ba2Cu3O7 with Tc=94 K (the first superconductor having Tc greater than

the boiling temperature of nitrogen, T=77,4K) (1987), a mercury based copper

oxide material with Tc=133 K (1993), again a mercury based copper oxide with

Tc=166 K (1996).

Theoretical studies concerning high temperature superconductivity have

gained acceleration over the past years with the development of new ideas as

well as the exponential growth of the computing technology. However, the mech-

anism of superconductivity in these materials remains mysterious in the sense

that the conventional BCS theory of superconductivity[4] cannot be applied to

these materials. The reason for that lies behind the fact that in the BCS theory,

1



CHAPTER 1. INTRODUCTION 2

the coherence length associated with the average size of a Cooper pair is large

(∼500Å–10000Å) with respect to that of high-Tc compounds (∼12Å–15Å). Thus,

for high-Tc cuprates, the application of standard mean field techniques may not

reveal the real physics of the problem. However, the central idea of the BCS

theory, which is the pairing of electrons, is still used to find out some properties

of high-Tc materials.

In the search for a Hamiltonian to describe the behavior of these materials,

the one-[5] and three-band Hubbard models[6, 7, 8] and the t-J model[9] were pro-

posed. Although these models are results of great simplifications, they are now

in the center of theoretical studies. The theories that combine the pairing ideas

with strong antiferromagnetic correlations seen in the cuprates contain spin-bag

type theories[10, 11, 12], antiferromagnetic Fermi-liquid theories[13], and dx2−y2

theories [14, 15]. In the spin-bag type theories, superconductivity is explained

based on the observation that in these materials there exists an antiferromagnetic

spin ordering over distances large compared to lattice spacing. This spin correla-

tion produces an electronic pseudogap ∆SDW which is locally suppressed by the

addition of a hole. This suppression in turn forms a bag inside which the hole

is self-consistently trapped. Then these holes are attracted by sharing a com-

mon bag, and this pairing interaction Vk−k′ leads to a superconducting energy

gap ∆SC which is nodeless over the Fermi surface. In ref.[13], the antiferromag-

netic correlation length of 2,5 lattice constants is found for a phenomenological

model of a one-component system of antiferromagnetically correlated spins. It is

shown that all of the available normal state NMR and NQR measurements in the

Y Ba2Cu3O7 are quantitatively well-explained by this model. The calculations

based on the pairing mechanism that involve antiferromagnetic spin fluctuations

support the proposal that high-Tc superconductors possess a dx2−y2-type symme-

try in the superconducting state, as opposed to s-wave symmetry seen in normal

superconductors. It has been shown that[15], this highly-anisotropic state is con-

sistent with NMR measurements. A typical phase diagram for high-Tc materials

is shown in Figure 1.1. The antiferromagnetic phase dominates near half-filling,

and is superseded by superconductivity (SC) at higher dopings, often by way of

spin glass (SG) phase. At extreme overdoping, the material becomes a metal.
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The underdoped normal state exhibits many anomalous properties which are in-

dicative of its non-Fermi Liquid nature.

SC

AF

SG

Marginal FL Line

Fermi Liquid

non-Fermi Liquid

T

δ

Figure 1.1: A typical phase diagram for high-temperature superconductors. T is
the temperature, δ is the doping.

Theories that do not use the pairing ideas treat the excitations as spinons

and holons[16]. Spinons have zero charge and spin 1/2, whereas holons have

the charge e and spin 0. In this direction the 1D Hubbard model has been dis-

cussed by Anderson[17]. Among the other approaches to the high-Tc superconduc-

tivity are anyon superconductivity[18, 19, 20], gauge theories[21], and marginal

Fermi-Liquid theories[22]. In anyon superconductivity theories, it has been men-

tioned that a spinon carrying half-fermion statistics plausibly binds to any in-

troduced hole and creates a spinless charged half-fermion composite. Then, two

half-fermions can pair to make a boson, which is a good candidate for a supercon-

ducting condensate. It has also been shown that[20], these pairs are energetically

favorable. A fluctuating gauge field scatters holes strongly and the superconduc-

tivity coincides with the onset of coherence among the holes[21]. It is claimed

that[22] the normal state anomalies in the Cu-O high-Tc superconductors follow

from the fact that there exists spinon and holon excitations with the absorptive

part of the polarizability at low frequencies ω proportional to ω/T and constant

otherwise. This hypothesis characterizes these materials in the normal state as

marginal Fermi-liquids and leads to an attractive particle-particle interaction for

superconductive pairing. Other approximations such as perturbative calculations
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in bubble and ladder diagrams, as well as self-consistent ones (mainly mean-field-

like) have results that are difficult to judge their results as to their closeness to

the actual properties of the models[23].

Although all of the aforementioned approaches helped in many ways in under-

standing different aspects of these materials, the difficulty in the solutions of the

t− J and the Hubbard models prevents a clear-cut theory for high-temperature

superconductivity. As yet, only one-dimensional cases of these models are fully

understood[25, 26], which are not so interesting because of the 2D nature of the

problem. However, even in 1D, Ogata et. al. showed that[26] there exist a

region in the parameter space where superconducting correlations become dom-

inant. The solution of Ref.[26] utilizes exact diagonalization and exact solutions

at J/t = 0 and 2. It is shown that phase separation takes place above a critical

value of J around Jc = 2.5 − 3.5 depending on the electron density. There is

no phase separation in the 1D Hubbard model. The phase- separation in the 2D

t − J model is investigated using high-temperature series expansion by Putikka

et. al. through tenth order[27]. It was shown that the phase separation is quite

different than the 1D case, since in one-dimension the phase-separation line is

in the relatively narrow range between J/t = 2.7 as n → 0 and J/t = 3.5 at

half-filling, whereas in 2D it extends from J/t = 3.8 as n → 0 to J/t = 1.2 near

half-filling. Also the slope of the phase-separation line in the 1D case is positive,

whereas it is negative in the 2D case[27, 28]. For a complete list of references

regarding the early times of high-temperature superconductivity theories, refer

to the review article by Dagotto[23].

More recent approaches to the t − J model focus on the configuration of

electrons and holes in the superconducting state. One possible candidate is the

so-called striped phase, where electrons and holes arrange themselves in such

a way that the configuration goes as two electrons one with spin up and the

other with spin down followed by two holes. This state has been examined by

many groups with numerous techniques, both analytically as well as numerically.

Among them are density matrix renormalization group (DMRG) studies[29, 30],

exact diagonalization techniques[31], and computational studies[32, 33]. In the

density matrix renormalization group study of the 2D t − J model, a striped
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phase is found at a hole doping of x = 1/8 on clusters as large as 19 × 8[29].

At the same hole doping, it was shown that[31] the low-energy states of the

2D t−J model are uniform, whereas the excited states with charge density wave

structures could be interpreted as striped phases. Computational studies indicate

that[32] the elementary stripe “building block” resembles the properties of one

hole at small J/t, with robust AF correlations across the hole induced by the local

tendency of the charge to separate from the spin. Thus, it is argued that the seed

of half-doped stripes already exists in the unusual properties of the insulating

compounds.

In the next chapter, the models of high-Tc superconductivity and the hard-

spin mean-field theory are discussed, the latter of which constitutes an important

aspect of the approximation that is used in this thesis. Due to the quantum

nature of the problem, one should be very careful in handling the models that

are mentioned above. The hamiltonians of these models consists of operators

that does not commute at the two consecutive sites of the lattice on which all

these hamiltonians are defined. This clearly makes a conventional renormalization

group calculation questionable. Thus, in the third chapter, a way to overcome

this difficulty is presented with an application to the 1D t−J model. This method

combines the hard-spin mean-field theory with the block-spin transformation of

renormalization theory, yielding a finite temperature phase diagram for the 1D

t− J model. In the fourth chapter, a similar approach is applied to the 2D case,

this time with mean-field theory instead of the hard-spin mean-field theory, due

to some limitations discussed in the text. In the last chapter, we conclude with

the results.



Chapter 2

THEORETICAL

BACKGROUND

In this chapter, theoretical background that is necessary for the following chapters

will be elucidated. The chapter starts with the Heisenberg model and continues

with the Hubbard model and the t − J model. The reduction of the Hubbard

model to the one-band t − J model in the strong coupling regime will also be

presented. Mean-field theory and renormalization group theory are examples of

general theories about which the reader can find information easily[39]. For this

reason, this chapter contents with the hard-spin mean-field theory and closes with

an application to the 2D Ising model.

2.1 Heisenberg Model

Strong antiferromagnetic correlations are dominant in high-Tc cuprates. It is

this feature of these materials that makes necessary to study first the spin-spin

interaction term, i.e. the Heisenberg term, before going on with the Hubbard

model and the t− J model. Indeed, both of these models include the Heisenberg

term. The Heisenberg hamiltonian put spins on a square lattice and lets the spins

interact with a vector interaction[24]. In the most general form, the Heisenberg

6
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model is defined as:

H =
∑

〈ij〉
JijSi · Sj

=
∑

〈ij〉
Jij(SixSjx + SiySjy + SizSjz). (2.1)

where Jij is the interaction constant between the spin at the ith site and the

spin at the jth site. In general the summation is taken over all sites 〈ij〉, but

for simplicity, one takes into account only the nearest neighbor interaction and

treats the system as an isotropic one. In this case J is a constant and can be

taken outside the summation:

H = J
∑

〈ij〉
Si · Sj (2.2)

In this convention, J is positive for antiferromagnetic interaction and negative

for ferromagnetic interaction. Note that Heisenberg model reduces to the Ising

model in the absence of Sx and Sy terms, and reduces to the XY model in the

absence of the Sz term. It is possible to write this hamiltonian in many ways,

e.g. in the ladder representation, defining:

Six =
1

2
(Si+ + Si−), Siy =

−i

2
(Si+ − Si−), (2.3)

it is possible to write the Heisenberg hamiltonian as:

H =
J

2

∑

〈ij〉
(Si+Sj− + Si−Sj+ + 2SizSjz) (2.4)

The operator(s) Si+ (Si−) can be thought of as creating (destroying) a spin up

(down) electron at site i. The Heisenberg model is often solved for spin greater

than one-half or for coupling between spins which may be further neighbors. Here

the word solve means “approximately solve”, since it has not been solved exactly,

except in one dimension[25].
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2.2 Hubbard Model

2.2.1 Three-Band Model

i

i+cy

i+cx

a
2

Cu ≡ O ≡

a

Figure 2.1: 2D CuO2 lattice

Emery first suggested that[6] the electronic structure of the CuO2 planes

can be described by a Hubbard Hamiltonian on a 2D-lattice having one Cu site

and two O sites per unit cell shown in Figure 2.1. A single 3dx2−y2 orbital in

each Cu site as to become hybridized with each of the four 2px, 2py orbitals of

the surrounding O sites pointing toward the i-site, as shown in Figure 2.2. In

addition, a strong Coulomb repulsion term is present when two electrons happen

to be both in the 3d orbital at the same site i. A hamiltonian describing the

above interactions is of the form:

H =
∑
iσ

εdd
†
iσdiσ + U

∑
i

ni↑ni↓ +
∑
µσ

∑
α

εpp
α†
µσp

α
µσ

+
∑
iσ

∑
µi

(Viµd
†
iσpµiσ + h.c.). (2.5)

where the Latin indices label sites on an arbitrary lattice, σ =↑, ↓ is a spin index

(for spin-1/2 fermions) and i and µ denote, respectively, the Cu sites and the

O sites; d†iσ, p
α†
µiσ

create electrons with spin σ in the Cu(3dx2−y2) and O(2px) or

O(2py) orbitals of energies εd and εp. In Equation 2.5, the sum over µi = i± cx;
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µi = i ± cy runs over the four O−sites around the Cu−site i and, according to

the hybridization scheme of Figure 2.2, it is understood that the pµiσ’s indicate

px
µiσ

and py
µiσ

for µi = i± cx and µi = i± cy respectively.

-

+

-

-

+ + - +

-

+

-V
-V

+V

+V

+-
py

px

dx2−y2

Figure 2.2: Hybridization scheme between Cu− 3dx2−y2 and O − px, py orbitals

The hybridization matrix element Viµ is assumed to be proportional to the

overlap of the corresponding 3d and 2p orbitals and has then the form

Viµ = (−1)αiµV (2.6)

with

αiµ =

{
1 for µi = i + cx; µi = i + cy;

0 for µi = i− cx; µi = i− cy.
(2.7)
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2.2.2 One-Band Model

A more simpler, one-band, version of the Hubbard model is defined by the many-

body hamiltonian:

H = −
∑
ij

∑
σ

tijc
†
iσcjσ +

1

2

∑

ijkl

∑

σσ′
〈ij|v|kl〉c†iσc†jσ′clσ′ckσ (2.8)

where the ciσ and c†iσ are electron annihilation and creation operators, tij is the

hopping integral between the sites i and j, and v is the two-body Coulomb po-

tential. For simplicity, one considers only the nearest neighbor (n.n.) hopping:

tij =

{
t (i, j) = n.n.

0 otherwise
(2.9)

and screened interactions:

〈ij|v|kl〉 =

{
U i = j = k = l

0 otherwise
(2.10)

For a single band, this implies σ′ = −σ ≡ σ̄, and the simplest version of the

model becomes:

H = −t
∑

〈ij〉

∑
σ

c†iσciσ + U
∑

i

ni↑ni↓, (2.11)

where niσ = c†iσciσ and 〈ij〉 denotes a sum over n.n. ordered pairs.

2.3 t− J Model

2.3.1 Three-Band Model

Due to very strong Cu−O bonds on the planes, the basic assumption in writing

a hamiltonian to describe the high-Tc materials is to restrict the consideration

in electrons moving on the CuO2 planes. The Cu2+ ions have nine electrons in

the 5d orbitals, while O2− ions have their 3p orbitals occupied. This can further
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be simplified by taking into account that every Cu atom is surrounded by a O

atom as shown in Figure 2.1. The copper and oxygen orbitals can be shown to

separate, and the state with highest energy is a dx2−y2 wave carrying the missing

electron which gives the ion its spin-1/2. This is schematically illustrated in

Figure 2.3. Thus, with one hole per unit cell (i.e. in the absence of doping),

the planes can be described by a model of mostly localized spin-1/2 states that

gives these materials their antiferromagnetic character. The other energy levels

are occupied, and as a first order approximation, they can be neglected. It has

 (1)

(6)

(2)

(2)

 (2)

2p

O Cu

3d

dxy′ , dxz′ , dyz

d3z2−r2

εd

dx2−y2

Figure 2.3: Formation of bonding between a Cu2+ and two O2− ions. Only
the d electrons of Cu and the px and py orbitals of the oxygens are considered.
The numbers in the parentheses are occupations of the levels in the undoped
system[23].

been mentioned before that high-Tc compounds are indeed insulators with strong

antiferromagnetic correlations in the presence of doping. In order for this to

be preserved, upon doping, the double occupancy of the dx2−y2 orbital must be

energetically unfavored, hence giving the material its antiferromagnetic character.

Then, the three band model can be written as[6, 7, 8] (with the vacuum defined
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as filled Cud10 and Op6 states):

H = −tpd

∑

〈ij〉
(p†jdi + pjd

†
i )− tpp

∑

〈jj′〉
(p†jpj′ + pjp

†
j′) + εd

∑
i

nd
i + εp

∑
j

np
j

+ Ud

∑
i

nd
i↑n

d
i↓ + Up

∑
j

np
j↑n

p
j↓ + Udp

∑

〈ij〉
nd

i n
p
j . (2.12)

Indeed, this is an extended Hubbard model, where pj’s are fermionic operators

that destroy holes at the oxygen sites labeled j, di’s the similar operators for

the copper sites labeled i. The terms tpd and tpp correspond to the hopping

amplitudes between Cu − O and O − O, respectively. Ud and Up are Columbic

repulsions when two electrons happen to be at same d and p orbitals and Upd is

the Columbic repulsion between a Cu site and a O site. The O−O hopping term

tpp and the repulsion term Up are introduced for completeness and they can be

neglected in reduction to the one-band model. In the strong coupling limit this

model reduces to the Heisenberg model with a superexchange antiferromagnetic

coupling[8]. Typical values of the parameters in the Hamiltonian is given in Table

2.1.

εp − εd tpd tpp Ud Up Upd

3.6 1.3 0.65 10.5 4 1.2

Table 2.1: The estimates for the values in the three-band t− J model in eV’s.

2.3.2 One-Band Model

Zhang and Rice introduced a single-band hamiltonian in order to describe the

superconducting CuO2 planes[9]. Their main reasoning is based on hybridization

that strongly binds a hole on each square of O atoms to the central Cu2+ ion

to form a local singlet. Then, this singlet moves through the lattice of Cu2+

ions in a similar way as a hole in the one-band effective hamiltonian. Here, it is

important to make the distinction between holes and vacancies. A vacancy is a

missing oxygen atom, while a hole is an oxygen atom with charge -1 instead of
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-2[34]. With the removal of the terms introduced for completeness and the term

corresponding to the Columbic repulsion between a Cu site and a O site, the

hamiltonian in Equation 2.19 becomes:

H = −tpd

∑

〈ij〉
(p†jdi + pjd

†
i ) + εd

∑
i

nd
i + εp

∑
j

np
j + Ud

∑
i

nd
i↑n

d
i↓. (2.13)

Consider the case when the atomic energy of the Cu holes ε = 0 and ε > 0. The

hybridization matrix, tpd, is assumed to be proportional to the wave-function

overlap of the Cu and O holes. It is also assumed to be constant and taken

outside of the summation. Taking into account of the phase factor, and assuming

the Cu− Cu distance is the lattice constant, one can write it as:

−tpd = (−1)nt,pt0, (2.14)

where t0 is the amplitude of the hybridization, np,d = 2 if l = i− 1
2
x̂ or l = i− 1

2
ŷ,

and np,d = 1 if l = i+ 1
2
x̂ or l = i+ 1

2
ŷ. In the absence of doping, the La2CuO4 has

1 hole per Cu. At t0 = 0, all the Cu sites are singly occupied, and all the O sites

are empty in the hole representation. When t0 is small, then the virtual hopping

processes involving the doubly occupied Cu hole states produces a superexchange

antiferromagnetic interaction between neighboring Cu sites, and the model is well

described by the Heisenberg model:

H = J
∑

〈ij〉
Si · Sj, J =

4t40
ε2
p

(
1

U
+

1

2εp

). (2.15)

Here the summation is taken over nearest-neighboring sites, and S’s are spin-1
2

operators. Consider the copper ion surrounded by four oxygen hole states shown

in Figure 2.2. The states of the holes can be either symmetric or antisymmetric

with respect to the central Cu ion. When combined with the Cu hole, these states

form singlet and triplet states. To the second order in perturbation theory about

the atomic limit, the energy of the spin singlet state has the lowest energy[9],

and hence it is possible to work in the subspace of the spin singlet state, without

changing the physics of the problem. This effectively corresponds to replacing

the hole originally located at the oxygen by a spin singlet state centered at the
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Cu-site. In turn, the model is equivalent to electrons and spinless holes moving

on a 2D square lattice shown in Figure 2.4.

=⇒

O ≡Cu ≡ hole ≡e− ≡

Figure 2.4: Reduction of the three-band model to the one-band t− J Model.

The one-band t− J model can now be written as:

H = −t
∑

〈ij〉,σ
[(1− ni−σ)c†iσcjσ(1− nj−σ) + (1− ni−σ)ciσc

†
jσ(1− nj−σ)]

+ J
∑

〈ij〉
[Si · Sj − 1

4
ninj]. (2.16)

where Si are spin-1/2 operators at the sites i of the 2D lattice, and J is the

antiferromagnetic interaction between the nearest neighbors sites. The hopping t

term corresponds to the kinetic energy that allows the movement of the electrons

in the lattice. The doubly occupied sites are not allowed and are projected out by

the operators (1 − ni−σ). With this definition, one considers only three possible

states per site, i.e. an electron with spin up or down or a hole. It is clear that in

the absence of doping, i.e. t = 0, the model reduces to the Heisenberg model of

interacting fermions in a 2D lattice.

It has to be mentioned that the reduction of the three-band model to the

single-band model is still controversial and in the past it has been a subject of

debate[35, 36, 37]. There is also another version of the t− J model, the so-called
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extended t− J model which is defined by:

H = t
∑

〈ij〉,σ
(c†iσcjσ + ciσc

†
jσ) + t′

∑

〈ik〉,σ
(c†iσckσ + ciσc

†
kσ)

+ J
∑

〈ij〉
[Si · Sj − 1

4
ninj]. (2.17)

where the t′ term is introduced to include the next-nearest neighbor hoppings.

Again, it is understood that the doubly-occupied sites are not allowed. Although

the extension can be generalized, in what follows, we shall assume that t − J

model of the Equation 2.23 can be used to describe the cuprates, and the higher

order terms are small enough that they can be neglected.

2.4 Strong Coupling Limit of the One Band

Hubbard Model

The Hubbard model is mainly studied in the strong coupling limit in the high-

temperature superconductivity community. However, in this limit, this model

reduces to the t − J model as will be shown below. Hence, one can restrict

himself to the t− J model only.

Consider the one-band Hubbard model written as (this discussion follows that

of Ref.[40]):

H = H0 + V, (2.18)

where H0 is the hopping term and V = U
∑

i ni↑ni↓. Let Hn be the eigenspace of

V with exactly n doubly occupied sites, corresponding therefore to the eigenvalue

En = nU . The projectors Pn onto Hn can be generated by expanding:

Π(x) =
N∏

i=1

[1− (1− x)ni↑ni↓]

=
N∑

n=0

xnPn, (2.19)
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where 0 ≤ x ≤ 1 and N is the number of sites in the lattice. In particular, the

Gutzwiller projector which is defined as:

P0 =
N∏

i=1

(1− ni↑ni↓) (2.20)

selects the subspace containing no doubly-occupied sites at all, i.e. ni ≤ 1 as an

operator inequality. One can as well define operator projecting onto the subspace

containing at least one doubly-occupied site:

Pα ≡
∑
n≥0

Pn. (2.21)

Clearly, P0 + Pα = 1̂. Using the decomposition of identity, one can write:

H0 ≡ P0H0P0 + PαH0Pα + P0H0Pα + PαH0P0, (2.22)

and

V ≡ PαV Pα. (2.23)

It is trivial to check that: P0H0Pα = P0H0P1 and PαH0Pα = P1H0P0. Using

the identity ciσ ≡ ciσ[(1− niσ̄) + niσ̄], one can write H0 as[38]:

H0 ≡ Th + Td + Tmix, (2.24)

where:

Th = −t
∑

〈ij〉,σ
(1− niσ̄)c†iσcjσ(1− njσ̄); σ̄ = −σ (2.25)

Td = −t
∑

〈ij〉,σ
niσ̄c

†
iσcjσnjσ̄ (2.26)

Tmix = −t
∑

〈ij〉,σ
{niσ̄c

†
iσcjσ(1− njσ̄) + niσ̄ciσc

†
jσ(1− njσ̄)}. (2.27)
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With these definitions of the terms in the one-band Hubbard model, we can write:

H = H̃0 + Hα, where: (2.28)

H̃0 = P0H0P0 + PαH0Pα + V (diagonal term), (2.29)

Hα = P0H0Pα + PαH0P0 (off-diagonal term). (2.30)

In order to find a canonical transformation eliminating the effect of Hα to lowest

order, i.e. such that the transformed hamiltonian satisfies P0HeffPα = 0 to the

required order, one can start with the formal definition:

H(λ) = H̃0 + λHα, (2.31)

and seek a canonical transformation of the form:

U(λ) = eiλS ; S = S†, (2.32)

where S has to be such that the transformed hamiltonian Heff (λ) obeys:

Heff = eiλSH(λ)e−iλS = H̃0 +O(λ2). (2.33)

Expanding Equation 2.40 in terms of λ, one gets:

Heff (λ) = H̃0 + λ(Hα + i[S, H̃0]) + λ2(i[S, Hα] +
1

2
[S, [H̃0,S]]) +O(λ2), (2.34)

where S is determined from:

[H̃0,S] + iHα = 0. (2.35)

Hence, up to terms of order t2 (setting λ = 1), one finds:

Heff = H̃0 +
i

2
[S, Hα]. (2.36)

In the low-energy limit with doubly occupied states are projected out by the
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Gutzwiller projector P0, the effective hamiltonian Heff is given by[38]:

P0HeffP0 = P0ĤeffP0 with

Ĥeff = Th + H(1) + H(2), (2.37)

where:

Th = −t
∑

〈ij〉,σ
(1− niσ̄)c†iσcjσ(1− njσ̄), (2.38)

H(1) = 2t2
∑

〈ij〉

∑
τσ

(1− niσ̄)c†iσcjσnjσ̄njτ̄c
†
jτciτ (1− niτ̄ ), (2.39)

H(2) = t2
∑

〈ijl〉

∑
τσ

(1− niσ̄)c†iσcjσnjσ̄njτ̄c
†
jτclτ (1− nlτ̄ ) (2.40)

and 〈ij〉 denote nearest neighbors, while i and l are nearest neighbors to j. Indeed,

the second term suggest the extended t− J model touched upon in the previous

section. Neglecting the second term and rearranging the first two terms with the

definitions made for the S operators in Section 2.1, one gets the one-band t− J

model:

Ht−J = −t
∑

〈ij〉,σ
(1− niσ̄)c†iσcjσ(1− njσ̄)

+ J
∑

〈ij〉
{Si · Sj − 1

4
ninj} (2.41)

as the strong coupling limit of the one-band Hubbard model. Thus, instead of

studying the strong coupling limit of the Hubbard model, one can safely deal

with the t− J model.

2.5 Hard-Spin Mean-Field Theory

In the conventional mean-field theory of spin systems, a spin feels the effective

field produced by the magnetizations of the nearby spins. This is clearly not the

case in reality, since a given spin should feel the effective field which is determined
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by the full spins (σi = ∓1) of its neighbors. Hard-spin mean-field theory is

developed[41] in order to fully incorporate this fact and is shown to yield very

satisfactory results for various models[41]. To illustrate the basics of the theory,

consider the spin−1/2 ferromagnetic Ising model defined with the hamiltonian

H = −J
∑

〈ij〉 SizSjz + h
∑

i Siz, where h is the external field. For simplicity,

consider the case when h = 0. In the lattice shown in Figure 2.5, the real spin in

S0

σ2

σ3

σ4

σ1

Figure 2.5: The spin configuration that is used in the hard-spin mean-field theory
of the 2D Ising model.

the middle is coupled to hard-spins at the boundary denoted with Greek letters.

Instead of the mean-field result for the magnetization m = tanh(J
∑

i mi), hard-

spin mean-field theory uses:

m = tanh(J
∑

i

σi), (2.42)

where σi = ∓1 with probability:

Pi(σi) =
1 + σimi

2
, (2.43)

where mi = 〈Siz〉 is the local magnetization. However, in our case the interaction

is isotropic and this gives mi = 〈S0〉 ≡ m. The probability in Equation [2.43] is

found by writing the most general form and then minimizing it with respect to

the constraints
∑

i Pi = 1 and
∑

i Piσi = m. The sum in Equation 2.42 is over

all neighboring spins. The equation for the magnetization then becomes:

m =
∑

{σi}

∏
i

(
1 + σim

2

)
tanh(J

∑
i

σi), (2.44)
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where the sum {σi} is over all interacting neighbor spin configurations. The index

i runs from 1 to 4 in the present case. This gives a self-consistent equation for the

magnetization. A similar equation can be written for the partition function from

which one can extract various information like entropy, free energy, etc. These

equations are solved numerically for the magnetization and partition function. In

Figure 2.6, the results for the magnetization and the free energy are summarized.

It is seen that the critical temperature at which the spontaneous magnetization

sets is Jc = 3.226. The conventional mean-field result for Jc is 0.25, whereas

the exact result is 0.4407. Thus, even in such a simple case considered above,

the hard-spin mean-field theory gives more correct results that the conventional

approach where the effective field is determined by magnetizations instead of

hard-spins.

The hard-spin mean-field theory is used in the renormalization group theory

of the 1D t − J model in the next chapter. However, because of computational

difficulties, it is hard to implement it in the 2D case. This issue will be discussed

further in the fourth chapter.

0.0 1.0 2.0 3.0 4.0 5.0
Temperature, 1/J

0.0

0.2

0.4

0.6

0.8

1.0

M
ag

ne
tiz

at
io

n,
 m

Figure 2.6: Magnetization (m) vs. temperature (1/J) for the 2D Ising model.
Jc = 0.3226 to be compared with the exact value Jc = 0.4407.
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Figure 2.7: Free energy vs. temperature for the 2D Ising model calculated from
the hard-spin mean-field approximation.



Chapter 3

ONE-DIMENSIONAL t-J

MODEL

Although it is believed that high-temperature superconductivity is related to 2D

CuO2 planes, the 1D t−J model also reveals some indications of superconducting

correlations in the physically allowable region of the parameter space. The phase

diagram of the 1D t − J model is now widely understood [26], but the problem

with the higher dimensions is still open. Ogata et. al.’s results show that phase

separation takes place above a critical value of J around Jc/t = 2.5 − 3.5 de-

pending on the electron density. They also mention that in the small J region

the Tomonaga-Luttinger liquid theory holds and that the superconducting corre-

lations become dominant between the exactly solvable case (J/t = 2) and phase

separation. As Anderson claimed[16] 2D strongly correlated electronic systems

could share some properties of 1D case. In this chapter, the results of a hard-

spin mean-field theoretical renormalization group technique for the 1D t − J is

presented. We have found ordered and disordered phases separated by a phase

separation line that is showed in the 1/V − t/V space. The character of the order

is dependent upon the values of V/J and µ/J . The main program used in this

study is given in Appendix A.1.

22
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3.1 Motivation

The non-commutativity of the operators at the two consecutive sites of the lattice

on which the t − J hamiltonian is defined does not allow one to apply standard

renormalization group techniques such as block-spin transformation and Migdal-

Kadanoff renormalization group procedure. To illustrate this fact, consider 1D

t− J hamiltonian defined as:

−βH =
∑

i

[−βH(i, i + 1)], (3.1)

with

H(i, j) = −t
∑

〈ij〉,σ
(c†iσcjσ + c†jσciσ)− J

∑

〈ij〉
Si · Sj + V

∑

〈ij〉
ninj + µ

∑
i

ni (3.2)

where t is the hopping amplitude, J is the spin-spin interaction constant (+ for

antiferromagnetic, − for ferromagnetic interaction), V stands for the Coulomb

interaction, ciσ destroys an electron at site i with spin σ, the number operator

niσ = c†iσciσ and Si are the electron density and spin operators at site i, and

ni = ni↑ + ni↓. Note that the conventional t − J hamiltonian is obtained when

V/J = 1/4. Doubly occupied sites are not allowed and they can be thought of as

projected out by a projection operator P defined as:

P = Πi(1− ni↓ni↑) (3.3)

In what follows, the + sign and ↑ as well as − sign and ↓ will be used inter-

changeably. Now, suppose a renormalization group-transformation in which the

renormalization is achieved by taking the trace over the even-numbered sites. In

exact form this transformation can be written as[42]:

〈u1u3u5 . . . |e−β′H′|v1v3v5 . . . 〉
=

∑
w2w4w6...

〈u1w2u3w4u5w6 . . . |e−βH |v1w2v3w4v5w6 . . . 〉, (3.4)
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where u1, w2, v3 etc. represent the single-site states. Primes indicate the renor-

malized system. Although this renormalization conserves the partition function,

it cannot be implemented due to the non-commutativity of the operators in the

hamiltonian. An approximation of the form:

Treven states exp(−βH) = Treven states exp

(
even∑

i

−βH(i− 1, i)− βH(i, i + 1)

)

'
even∏

i

Treven sites exp(−βH(i− 1, i)− βH(i, i + 1))

=
even∏

i

exp(−β′H ′(i− 1, i + 1))

' exp

(
even∑
i

−β′H ′(i− 1, i + 1)

)

= exp(−β′H ′), (3.5)

has been applied to t−J model[43] and gave no finite temperature phase transition

in 1D. This approximation consists in ignoring, in two formally opposite direc-

tions, the noncommutations of operators between the two consecutive segments

of the unnormalized system. Hence, an application of such an approximation is

questionable. Instead, consider a three-site cluster that couples to the boundary

with the Hartree-Fock approximated form of the interaction which is defined as:

AB = 〈A〉B + A〈B〉 − 〈A〉〈B〉, (3.6)

and then continue with a block spin transformation, the details of which will

be explained in the subsequent sections. This allows one to handle the problem

taking into account the commutators between the operators at the boundary.1

The approximation discussed here is a general one and can be applied to all lattice

hamiltonians defined in arbitrary dimensions. In this chapter, it is applied to the

1D t− J model and in the following chapter it is applied to the 2D t− J model

with minor differences from that of the 1D case.

1Indeed, this may be thought of as being equivalent to replacing the commutator of two
operators by a c-number, instead of the zero value emerging from the approximation discussed
in the text.
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3.2 Hard-Spin Mean-Field Treatment of the

Boundary

In order to evaluate the matrix elements of the t−J hamiltonian, it is convenient

to express both Si and ni in terms of creation and annihilation operators c†iσ and

ciσ. To do this one can define two other spin operators such that one of them

first destroys an electron having spin ↓ at site i and then creates an electron with

spin ↑ at the same site. Such an operator may be denoted as Si+ and in terms

of the creation and annihilation operators it becomes Si+ = c†i+ci−. Similarly one

can define the operator Si− = c†i−ci+, i.e., destroying an electron having spin ↑
and creating a new one with spin ↓ at site i. Since

Si = Sixx̂ + Siyŷ + Sizẑ, (3.7)

in the S2 − Sz basis, one can define:

Six =
1

2
(Si+ + Si−), Siy =

−i

2
(Si+ − Si−), Siz =

1

2
(ni+ + ni−). (3.8)

It is seen that in this basis, the only contribution to the off-diagonal elements in

the hamiltonian comes from the hopping term and the x- and y- components of

the spin operator.

The operators defined above are used to generate the matrix elements of the

t − J hamiltonian for a three-site chain coupled to the boundaries with hard-

spins that can take values σ = −1,0 and +1 with the probability evaluated as

(see Appendix A.2):

P (σ,m, n) = (1− n) +
1

2
mσ + (

3

2
n− 1)σ2, (3.9)

where m is the magnetization and n is the occupation. Since there are 3 possible

states attributed to one site, for a three-site chain, the hamiltonian is a 27 by 27

sparse matrix. The hamiltonian describing the internal dynamics of the three-site

system is straightforward to evaluate, whereas the coupling to the outside requires

special treatment, especially for the hopping term, t. Since the couplings are
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achieved by hard-spins, a re-definition of the creation and annihilation operators

at the boundary is needed in accordance with what value one attributes to these

hard-spins. As an example, consider a hard spin with values +1 or −1. Now,

if the neighboring site is occupied with an electron, the contribution from the

hopping term to the hamiltonian is zero since the probability of hopping between

these two sites is zero, no matter what spin values of these two sites have. In

other words, the hopping is dependent upon whether one of the two neighboring

sites is occupied and the other is not. For the spin-spin term, we can assume that

only the z-component of the spins are coupled to each other, an approximation

which becomes exact in the thermodynamic limit. The Coulomb term V and the

chemical potential term µ is straightforward. The situation can be illustrated as:

S3S2S1σ0 σ4

Figure 3.1: Hard spins, σ’s, interacting with the three site chain.

where — corresponds to internal dynamics of the spins and — corresponds to

coupling of these “real” spins to the hard ones, σ. One can now write the “hop-

pingless” part of the hamiltonian as:

H = −J(m0S1z + S1 · S2 + S2 · S3 + S3zm4)

+ V (〈n0〉n1 + n1n2 + n2n3 + n3〈n4〉)
+ µ(〈n0〉+ n1 + n2 + n3 + 〈n4〉), (3.10)

where m0 and m4 are the values that hard spins can take, and 〈n0〉 = m0m0 and

〈n4〉 = m4m4. In other words, 〈ni〉 = 1, when the ith site is occupied by a hard

spin with mi = ∓1. The hopping part of the hamiltonian is plugged manually

into the hamiltonian, considering the fact that it is zero when the two neighboring

sites at the boundary are both occupied or unoccupied, and it is equal to −t when

one of them happens to be filled and the other is not.

In order to evaluate the partition function, Z = exp(−βH), one has to cal-

culate the exponential of the hamiltonian matrix. For the case at hand, where

the hamiltonian is a 27 × 27 matrix, this calculation has been done by a straight
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Taylor series expansion of the exponential through 30th order. However, in 2D

t − J model where the hamiltonian matrix is a 243 × 243 matrix, the amount

of computation time for the same exponentiation routine is significantly large, of

the order of hours. A more efficient way, which is discussed in the next chapter,

has to be implemented in this case.

3.3 Renormalization Group Procedure

The renormalization group procedure used here is the block spin transformation,

where the coupling to the boundary is achieved via hard-spins mentioned in the

previous section. Given the values for the five coupling constants (see below),

namely K = (g, t, J, V, µ), we are looking for the values of the renormalized or

“primed” system, K′ = (g′, t′, J ′, V ′, µ′). The details are as follows.

3.3.1 Block Spin Rule and States

The block spin transformation that will be used in the forward renormalization

requires a definition of the majority rule for the block spins. This may be done

in many ways provided that it preserves certain symmetries in the system. The

system at hand has three possible states per site, an electron with spin up or

down, and a hole. A convention is used: for a three-site chain, whenever the

number of any of these states are equal to or greater than 2, then this block has

this state as the block spin. If the number of all three is equal, and this number is

1 by definition, then this block has the value of the one that resides in the center

of the chain. This definition of the majority rule treats all possible states on

equal-footing, and preserves the symmetry that for the 27 possible configurations

there are equal number of spin-up, spin-downs or holes, all nine. In Figure 3.2

this situation is schematically illustrated.

The t−J model has four coupling constants in its hamiltonian, namely, t, J, V ,
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µ

µ

µ

σ

σ

σ

Figure 3.2: Block spin rule: σ’s are the original spins, µ’s are the block spins.

and µ. When renormalizing the system, an additional term representing the con-

tribution to the free energy from the short wavelength degrees of freedom should

be traced out. With this additional term, denoted as g, there are a total of five

constants to be renormalized. This means that in order to construct the renor-

malization group equations, one has to choose at least five different states, all of

which should give five linearly independent equations for the coupling constants.

These states are chosen to be as in Figure 3.3. These states further preserves their

forms under block spin renormalization group transformation, a feature that al-

lows one to identify the low temperature fixed point. The state shown in Figure

3.3(e) is especially chosen, since it is believed to be the superconducting phase in

the high temperature cuprates.

3.3.2 Forward Renormalization

The next step is to calculate the magnetizations, mean occupations and partition

functions for the five different states defined in the previous section, by requiring

all possible hard-spin configurations at the boundary. There are a total of nine

such possibilities since each of the two hard spins can take three different values.
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(e)

(c)

(d)

(b)

(a)

Figure 3.3: States that are used in the renormalization group procedure of the
1D t − J model: (a) ferromagnetic state, (b) antiferromagnetic state, (c) empty
state, (d) plus-hole state, (e) striped state.

These are calculated numerically from the equations:

m =
∑

σ0=0,∓1

∑
σ4=0,∓1

P (σ0,m, n)× P (σ4,m, n)×mµ, (3.11)

n =
∑

σ0=0,∓1

∑
σ4=0,∓1

P (σ0,m, n)× P (σ4,m, n)× nµ, (3.12)

Z =
∑

σ0=0,∓1

∑
σ4=0,∓1

P (σ0,m, n)× P (σ4,m, n)× zµ. (3.13)

Here, P (σ,m, n) is the probability function defined in Equation 3.9, and mµ, nµ

and zµ are found by taking the trace of the partition function over the block spins

µ = 0,∓1:

mµ = TrµSµe
−βH/zµ, (3.14)

nµ = TrµS
2
µe
−βH/zµ, and (3.15)

zµ = Trµe
−βH . (3.16)
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Of course, m1 = −m−1. Taking into account the effect of the last term in the

Hartree-Fock approximation defined in Equation 3.6, the expression for zµ be-

comes:

zµ = Trµ exp(−βH)

× exp [t(
√

1− n0
√

nµ,lb +
√

n0

√
1− nµ,lb)]

× exp [t(
√

1− n4
√

nµ,rb +
√

n4

√
1− nµ,rb)]

× exp [
1

2
J(mµ,lbm0 + mµ,rbm4)− V (nµ,lbn0 + nµ,rbn4)], (3.17)

where lb and rb stand for left and right boundary, respectively, and ni = m2
i

for i = 0 and i = 4. The Equations 3.11 − 13 implicitly give the value of the

magnetization, mean occupation and the partition function for the states defined

in Section [3.3.1]. For our purposes, the knowledge of the value of the partition

function is sufficient for construction of renormalization group equations. The

other two are given for reference purposes only.

3.3.3 Backward Renormalization

The renormalization group equations are given by the matrix equation:

R(K) = R′(K′), (3.18)

where R and R′ are 5 × 5 matrices, and K and K′ are 5-dimensional vectors.

This equation, in general, is nonlinear in K and K′. The matrices are found by

requiring that the renormalized and original systems conserve the free energy per

site, that is:

1

β
ln(Z) =

1

β
ln(e−βH) =

1

β′
ln(e−β′H′

) =
1

β′
ln(Z ′). (3.19)

So, one has to calculate the free energy of the renormalized system, that is the

system formed by the block spins, µ. This is indeed a difficult task, because it

involves the solution of the original system. For example, for the ferromagnetic
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state,

〈+ + + · · ·+ + + |e
P

i,j −β′H′(i,j)|+ + + · · ·+ ++〉, (3.20)

where the plus signs represent the block spins, should be calculated. Instead, we

have used an approximation of the form:

〈+++ · · ·+++ |e
P

i,j −β′H′(i,j)|+++ · · ·+++〉 ' 〈+++|e−β′H′ |+++〉, (3.21)

where the only matrix element included in the sum is taken as the one between

the ferromagnetic state of the three-site chain. The latter is used in the calcu-

lation of the free energies of the five different states. The Equation 3.8 is then

solved numerically by the method of Gaussian elimination to give the renormal-

ized coupling constants as functions of the original coupling constants. i.e.:

K′ = F(K). (3.22)

3.3.4 Fixed Points

Fixed points satisfy the equation:

K∗ = F(K∗). (3.23)

Six fixed points are found which are summarized in Table 3.1. The character of

these fixed points are examined by the linearization of the Equation 3.22 around

these fixed points. Eigenvalues of the linearization matrix are found as in Table

3.2. All of them has the eigenvalue ∼ 3, corresponding to the term, g. The

eigenvalues suggest that the fixed point labeled by the letter “B” is an attractive

one and is a candidate of a high-temperature fixed point. The fixed point “C”

has two eigenvalues with absolute values greater than one and two less than one.

This may be an indicative of a critical fixed point. It is to be mentioned here

that the fixed point “F” has complex conjugate eigenvalues, which are called the

irrelevant eigenvalues in the renormalization group literature. The latter is seen

in some random systems[39].
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g t J V µ
A −1.0986 0.0000 0.0000 0.0000 0.0000
B −7.3195 0.0119 0.0000 −0.0358 7.0002
C −1.4691 1.6332 −0.0319 −1.2348 −0.5864
D −0.2131 −0.0002 0.0000 0.0003 −2.4520
E −3.8169 0.1308 −1.4047 4.2023 −6.5739
F −12.3355 5.7689 0.9526 −7.9628 12.4538

Table 3.1: Fixed points that are found from the hard-spin mean-field renormal-
ization group theory of the 1D t− J model.

A B C D E F
3.0000 3.0000 3.0018 2.9999 2.9917 3.0000
−0.0005 0.5048 −3.8476 0.0050 2.9409 −0.5468
0.0001 −0.0014 0.0485 −3.3404 −2.5039 0.2766 + 0.1644i
1.3340 0.0005 −2.0042 −5.5018 −0.0550 0.2766 − 0.1644i
0.1664 0.2389 −0.7649 −1.4109 −1.5126 −0.0384

Table 3.2: Eigenvalues of the linearization matrices corresponding to the fixed
points for the 1D t− J model.

3.4 Results and Discussion

By means of a repetitive iteration of randomly chosen points in some portion of

the phase diagram, we have obtained a projection of the phase diagram in the

1/V − t/V space, for various values of V/J and µ/V . This is shown in Figure

3.4. We have found an ordered phase and a disordered phase separated by a

separatrix that is seen in some random systems[39]. The points above the phase

separation lines shown in Figure 3.4 eventually converge to the high temperature

fixed point labeled by the letter “B”. For the points lying below the lines, the

behavior of V and µ show similar behaviors, V gets large negatively, whereas µ

gets large positively. In this region, the character of the ordered phase reveals

distinct properties depending upon how t and J converges. Below the solid line,

the order seems to be of antiferromagnetic character, as t tends to zero J gets

large (positive in our notation). That is, as µ gets large, the lattice is completely
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filled and there is no space left for electrons to hop from one site to another. This

fact is verified by the value of t getting smaller. The antiferromagnetic character

is defined by the sign of J , which is positive in this case. Also, the calculated

value of the partition function for the antiferromagnetic state is greater than the

other four states in this region.
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Figure 3.4: A cross section of the phase diagram of the 1D t−J model for different
values of µ/V and J/V .

In the intermediate region between the dotted line and the solid line, the

value of t gets larger and J tends to go from negative values to the positive ones.

However, the latter is rarely achieved, since the largeness of the other numbers

prevents convergence. The fact that t gets large indicates that the holes enter

the game, this time allowing the electrons to hop from one site to another. There

are two possible candidates for the order in this region, one is shown in Figure

3.3(d), the other in Figure 3.3(e). The value of the partition functions for these

two states tend to infinity after the first iteration. Hence, it is difficult to say which

of the two the system will prefer. However, since J tends to go from negative

values to positive ones, one may conclude that eventually the antiferromagnetic

correlations become dominant, implying the order is of striped character shown

in Figure 3.3(e).



Chapter 4

TWO-DIMENSIONAL t-J

MODEL

This chapter presents the results of a research which is in progress. It is believed

that the 2D t−J model mainly captures the essential features of high temperature

superconductivity. We report the results of a mean-field renormalization group

theory of the 2D t−J model, with the essential parts of the phase diagram. Just

as in the 1D counterpart, one has a phase separation between an ordered phase

and a disordered one, the ordered phase being of antiferromagnetic character

in this case. This is in agreement with the results that the ground state of

the 2D t − J model is antiferromagnetic[23]. Because the computation time is

large (approximately ten minutes for one iteration), a complete phase diagram

is difficult to achieve. Hence, what happens between the ordered and disordered

phases is still open.

34
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4.1 Mean-Field Instead of Hard-Spin Mean-

Field

Although hard-spin mean-field theory is more robust compared to mean-field

theory, an application of it to the two dimensional t − J model is not feasible

because of computational limitations. To illustrate this fact, consider block spins

made up of 3× 3 blocks1 at the boundary are interacting with hard-spins. Then,

there is 0,∓1. Since we have nine original spins, the hamiltonian describing the

internal dynamics is a 39 by 39 matrix, a very large dimension indeed. In the

numerical analysis we used, this matrix has to be generated for 39 times, a task

which is impossible to implement. The block states used here are not 3×3 states,

however a similar analysis shows that although not impossible, the computation

time is still very large for our case. Therefore, when dealing with the interactions

at the boundary, one is forced to use mean-field-like couplings to the outside, the

essential feature is of Hartree-Fock type mentioned in the previous chapter. Our

aim again is to achieve the block spin transformation by taking into account the

effects at the boundaries, therefore being able to deal with the non-commutations

at the two consecutive sites of the lattice.

4.2 Mean-Field Treatment of the Boundary

The t− J model hamiltonian in 2D t− J model is defined as:

H = −t
∑

〈ij〉,σ
(c†iσcjσ + c†jσciσ)− J

∑

〈ij〉
Si · Sj + V

∑

〈ij〉
ninj + µ

∑
i

ni, (4.1)

where the sums over 〈ij〉 is made over the nearest neighbor spins only. Just

as in the one dimensional problem, double occupancies are not allowed. In the

two dimensional version of the problem, we used the block states that are shown

in Figure 4.1. In this figure, the capital letters (S’s) stand for the real spins,

1The choice of blocks that are made up of three-site chains is compulsory in order that the
states used in the renormalization group analysis preserve their forms under renormalization.
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whereas the lowercase letters (m’s) stand for the mean-field couplings to the

outside. Also, the interactions between the real spins are shown by solid lines,

and the couplings at the boundary to the mean-fields are shown by dashed lines.

As will be shown later, this choice of the block spins preserves the ground states

under renormalization, as well making the computational time lesser than of the

other possibilities. With this choice, the hamiltonian matrix becomes a 243 by

243 matrix, since there are a total of 35 = 243 different configuration of states.

m5

m4

m3

S4

S2

S3

S5

S1m1

m2

m7

m6m8

Figure 4.1: Block spin configuration that is used in the renormalization group
theory of the 2D t− J model.

The hamiltonian of the internal dynamics is calculated exactly as:

Hinternal = − t(c†1+c3+ + c1+c†3+ + c†1−c3− + c1−c†3−

+ c†2+c3+ + c2+c†3+ + c†2−c3− + c2−c†3−

+ c†3+c4+ + c3+c†4+ + c†3−c4− + c3−c†4−

+ c†3+c5+ + c3+c†5+ + c†3−c5− + c3−c†5−)

− J(S1 · S3 + S2 · S3 + S3 · S4 + S3 · S5)

+ V (n1n3 + n2n3 + n3n4 + n3n5)

+ µ(n1 + n2 + n3 + n4 + n5), (4.2)

where the meaning of each term has been explained in the previous chapter.

Our next aim is to write a hamiltonian that takes into account the couplings

to the outside. To do this, we first start by denoting the magnetizations at the



CHAPTER 4. TWO-DIMENSIONAL t-J MODEL 37

boundary by xmi’s, and mean occupations by xni’s. The hopping term H1 is

treated separately, by considering whether the site to which an electron may hop

is filled or not. The remaining part of the hamiltonian that couples to the outside

can be written as:

H2 = − J{(xm1 + xm2 + xm8)S1z + (xm2 + xm3 + xm4)S2z

+ (xm4 + xm5 + xm6)S4z + (xm6 + xm7 + xm8)S5z}
+ V {(xn1 + xn2 + xn8)n1 + (xn2 + xn3 + xn4)n2

+ (xn4 + xn5 + xn6)n4 + (xn6 + xn7 + xn8)n5}. (4.3)

Then, the total hamiltonian becomes H = Hinternal + H1 + H2. This hamiltonian

is used for the calculation of the partition function Z = exp(−βH) in the forward

renormalization. However, since the matrix is large in size, the exponentiation

cannot be done with the direct Taylor series expansion because of computational

limitations. For this purpose, another way has been implemented, which can be

summarized as follows. First, the 243× 243 matrix was reduced to a symmetric

tridiagonal form by means of orthogonal similarity transformations. Second, the

eigenvalues of this tridiagonal matrix is found by the so-called QL method, to-

gether with the eigenvectors of the hamiltonian matrix. Third, the exponential of

the eigenvalues has been calculated. Finally, the exponential of the hamiltonian

matrix was found by the operation:

exp(H) =
∑

k

〈k|eλk |k〉, (4.4)

where |k〉’s are the eigenvectors and λk’s are the eigenvalues of the hamiltonian.
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4.3 Renormalization Group Procedure

4.3.1 Block Spin Rule and States

The majority rule for the two dimensional case is similar to the one dimensional

case. When the number of any of the three different states is greater than or

equal to 3, then the block spin that is formed by these states takes the value of

these states as the block spin value. Another possibility is that any two of the

three states may happen to be equal just as in the case of 2 pluses, 2 zeros and

a single minus. In this case, the block spin value is the one that resides at the

center of the block, no matter whether any of the two equally numbered states

reside at the center or not. Since it is not possible to generate all the 243 different

combinations of states here, we content with some examples to the block spin rule

shown in Figure 4.2.

Block SpinsOriginal Spins

Figure 4.2: Examples to the majority rule for the 2D t− J model.

The states used in the renormalization of the 2D t − J model are analogs of

the 1D case, again constructed in such a way as to preserve their form under

repetitive renormalization group transformations. They are shown in Figure 4.3.
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(a) (b) (c)

(d) (e)

Figure 4.3: States that are used in the renormalization group procedure of the
2D t − J model: (a) ferromagnetic state, (b) antiferromagnetic state, (c) empty
state, (d) plus-hole state, (e) striped state.

4.3.2 Forward Renormalization

The forward renormalization is the same as that used in the one dimensional

counterpart of the problem. We take the trace of the exponential hamiltonian over

the block states. A typical renormalization is shown in Figure 4.4 for an arbitrary

configuration of original spins in the lattice. The spins that are outside the block

spins only contribute to the free energy and do not enter the renormalization.

Another important difference from that of the 1D case is that this time the

correction to the partition function due to the last term in the Hartree-Fock

approximation comes from the mean-field interactions at the boundary. The

unabridged form of this correction is very lengthy to give here, but for the S1 site
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shown in Figure 4.1, it becomes:

zµ = Trµ exp(−βH)

× exp[t
√

1− n1(
√

xn1 +
√

xn2 +
√

xn8)]

× exp[t
√

n1(
√

1− xn1 +
√

1− xn2 +
√

1− xn8)]

× exp[
1

2
Jm1(xm1 + xm2 + xm8)]

× exp[−V n1(xn1 + xn2 + xn8)]. (4.5)

Figure 4.4: Forward renormalization of the 2D lattice.

4.3.3 Backward Renormalization

For the backward renormalization, we used a classical approximation in the cal-

culation of free energies per site. In order to do this, one can take an arbitrary

number of spins and evaluate the free energies using classical analog of the t− J

hamiltonian for the five different states that enter the renormalization. Then, the

free energy per site, f , is given by:

f =
Free Energy

number of spins
(4.6)
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In our case, we chose a 4 by 4 lattice, a total of 16 spins. The free energies per

site, as functions of the coupling constants, are calculated as follows:

Z ′
1 =

3

2
J +

3

2
V + µ + g (4.7)

Z ′
2 = −3

2
J +

3

2
V + µ + g (4.8)

Z ′
3 = g (4.9)

Z ′
4 =

3

4
t +

3

8
J +

3

8
V +

1

2
µ + g (4.10)

Z ′
5 =

3

8
t +

3

16
J +

3

16
V +

1

2
µ + g (4.11)

for the five states shown in Figure 4.3, respectively. The renormalization group

equations have been found by equating the free energies of the renormalized and

original systems. These equations are then solved numerically by the method

Gaussian elimination method to give the renormalized coupling constants as

functions of original ones. The fixed points and their physical meanings will

be discussed in the following sections.

4.4 Fixed Points and Discussion

We have found three fixed points that are given in Table 4.1. The eigenvalues

of the corresponding linearization matrices are given in Table 4.2. By looking at

these eigenvalues, we see that the fixed point labeled by the “A” has complex

conjugate eigenvalues with absolute values of the real parts less than one. Al-

though this may be thought of as an indicative of a separatrix between ordered

and disordered states, this cannot be the case because the fixed point itself re-

sembles a high temperature fixed point. The fixed point “B” cannot be linearized

in its neighborhood. It is possible that there is a singularity at that point, whose

physics may be interesting. However, the computation time for just one itera-

tion of the program is of the order of ten minutes, therefore making it almost

impossible to examine what really goes on around this point. One more time

note that the fixed point “C” has complex conjugate eigenvalues, hence there is a

strong possibility that this points would correspond to a real separatrix between
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a disordered and an ordered phase. Albeit the computation time is large, we were

g t J V µ
A −0.5490 0.0000 0.0000 0.0000 0.0000
B 0.0763 −1.865 2.2420 −0.6200 3.5820
C 0.0114 −0.9720 −0.4578 −0.2580 2.3550

Table 4.1: Fixed points that are found from the mean-field renormalization group
theory of the 2D t− J model.

able to check the high and low temperature behavior of the phase diagram. We

note that there is indeed an antiferromagnetic phase for low temperatures as the

t tends to zero and J diverges positively. Also, for points close to zero, it was

seen that they eventually converge to the fixed point labeled with the letter “A”.

The intermediate physics may be interesting to observe, especially around the

fixed points labeled with letters “B” and “C”. In Figure 4.5, we give a qualitative

picture of the phase diagram for the 2D t − J model, with a question mark for

the region that is still under investigation.

A B C
9.0000 8.9991

0.8444 + 1.4958i −6.4371
0.8444 - 1.4958i 2.1531 + 1.8450i

−0.1467 2.1531 − 1.8450i
0.0016 − 0.0811

Table 4.2: Eigenvalues of the linearization matrices corresponding to the fixed
points for the 2D t− J model.
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Figure 4.5: Qualitative picture of the phase diagram for the 2D t−J model found
by the mean-field renormalization group method.



Chapter 5

CONCLUSION

The quantum nature of the strongly correlated electronic systems makes it dif-

ficult to implement the various renormalization group techniques such as block

spin transformation and Migdal-Kadanoff bond-moving technique. At this point,

a novel study that combines the three important theories, namely, hard-spin

mean-field theory, mean-field theory, and renormalization group theory is pro-

posed and applied to the one and two dimensional t − J models. The method

presented here takes into account the noncommutations of the operators at the

two consecutive sites of the square lattice on which these models are defined. This

is achieved by replacing the real quantum interactions at the boundary by their

Hartree-Fock approximated form, which is equivalent to replacing the commuta-

tors at the boundary by a c-number. One is then allowed to apply a block spin

transformation over the lattice, resulting in renormalization group equations. The

proposed method is a general one and can be applied to various low-dimensional

model quantum systems.

Chapter 2 mainly deals with the high temperature superconductivity models,

and gives detailed information about t−J and Hubbard models. In this chapter,

the hard-spin mean-field theory is discussed, with its overwhelming advantage

over the conventional mean-field theory. A sample application of the former to

the 2D Ising model is presented with results for the magnetization and free en-

ergy. In Chapter 3, the hard-spin mean-field theory is used as a tool to account

44
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for the interactions at the boundary. This is done so by means of considering a

three-site t− J chain interacting at the boundaries with hard-spins. The robust

nature of the hard-spin mean-field theory comes from the fact that it considers

every possibility and disregarding none, by simply weighing the possibilities by

a pre-defined probability function. The renormalization group transformation

presented in this chapter is two-folded; while the “forward” renormalization cal-

culates the free energies by taking the trace of the partition function over the

block states, the “backward” renormalization calculates the same quantity for

the original lattice by means of an approximation as discussed in the text. Then,

by requiring that the two should be equal one arrives at the values of the renor-

malized coupling constants as functions of original ones. The investigation of the

fixed points in the coupling constant space yields a finite temperature phase dia-

gram for the one dimensional phase space. An ordered and a disordered phase is

found, separated by different phase separation lines. The character of the ordered

phase is investigated at different portions of the phase space, and it is found that

it shows antiferromagnetic character in its ground state, as the value of t gets

smaller and the value of J gets larger. This is verified by value of the free energy

being less than that of the other possible candidates. In the intermediate region,

it is mentioned that a striped phase may exist, as t tends to increase.

In Chapter 4, a similar method is applied to the two dimensional t−J model.

However, in dealing with the interactions at the boundary, mean-field theory is

used instead of the more liable hard-spin mean-field field due to the limitations

discussed in the text. Since the block spin used in the two dimensional problem

consists of five real spins, the matrix in this case is a 243 by 243 matrix, whose

exponential has to be generated numerous times in order to achieve convergence.

An efficient method for this purpose is explained, which allows one to calculate the

partition functions in an acceptable amount of time. The forward renormalization

in the 2D case is exactly the same as that of the 1D case, while the backward

renormalization makes use of a classical approximation in order to evaluate the

value of the free energies per site. The renormalization group equations yield

three fixed points in the two dimensional problem. The ground state is found to

have an antiferromagnetic character, which is indeed thought to be the ground
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state of the high-Tc cuprates. However, computation time limits the pace of the

investigation, that is why we are content with presenting the qualitative features

of the phase diagram only.

A next step may be the application of the method presented here to other

models such as the Hubbard model which is thought to be more realistic than the

t − J model. Also, the quantum version of the hard-spin mean-field theory is a

novel subject on its own, and may require further investigation by numerous ap-

plications to different quantum spin systems. This would clarify the advantages,

or if exists, disadvantages of this theory in the quantum domain.



Appendix A

1D t-J MODEL

A.1 The Program

common /hler/ h,eh
common /debug/ ideb,istate,ispin,jspin
dimension zz(5),istate(3,9),ispin(27),jspin(27)
dimension h(27,27),eh(27,27)
dimension xx(5),yy(5),e(5),b(5,5)
dimension vf(5),vb(5),bf(5,5),bb(5,5)

ideb=0

c generate block states

...........

open(1,file="tj.log",access="append")
linear=0

1 write(*,*)’enter g,t,j,v,mu: ’
read(*,*)g,t,xj,v,xmu

write(*,*)’ search for fp? (0 for no): ’
read(*,*)itest
if(itest.ne.0)goto 3
g=-5.

write(1,*)’start: ’,t,xj,v,xmu

write(1,*)t,xj,v,xmu

2 call rf(g,t,xj,v,xmu,zz)
call rb(g,t,xj,v,xmu,zz)
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write(*,*)’t,j,v,mu: ’,t,xj,v,xmu
write(*,*)’ one more loop? (0=no/1=yes/2=fixed point): ’
read(*,*)itest
if(itest.eq.0)stop
if(itest.eq.1)then

g=-5.
goto 2

endif

c search for fp:
3 xx(2)=t

xx(3)=xj
xx(4)=v
xx(5)=xmu
xx(1)=g

4 write(*,*)’searching around ’,xx
write(1,*)’searching around ’,xx

t=xx(2)
xj=xx(3)
v=xx(4)
xmu=xx(5)
g=xx(1)

call rf(g,t,xj,v,xmu,zz)
call r(xx,yy)

write(*,*)’old system: ’,zz
write(*,*)’new system: ’,yy
write(1,*)’old system: ’,zz
write(1,*)’new system: ’,yy

err=0.
do i=1,5

vf(i)=zz(i)
vb(i)=yy(i)
e(i)=zz(i)-yy(i)
err=err+abs(e(i))

enddo

write(*,*)’error measure: ’,err
12 write(*,*)’continue? (0=stop/1=continue/2=linearize): ’

read(*,*)itest
if(itest.eq.0)stop
if(itest.eq.1)goto 11

if(linear.eq.0)then
write(*,*)’sorry, matrices not calculated or lost’
goto 12

endif
linear=0
call gelg(5,5,bb,bf,ier)
if(ier.ne.0)then

write(*,*)’inversion problem in gelg; ier=’,ier
goto 12

endif
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do i=1,5
write(*,800)(bf(i,j),j=1,5)

enddo
goto 12

11 eps=0.001
do i=1,5

temp=xx(i)
xx(i)=xx(i)+eps

t=xx(2)
xj=xx(3)
v=xx(4)
xmu=xx(5)
g=xx(1)
call rf(g,t,xj,v,xmu,zz)
call r(xx,yy)

do j=1,5
b(j,i)=(zz(j)-yy(j)-e(j))/eps
bf(j,i)=(zz(j)-vf(j))/eps
bb(j,i)=(yy(j)-vb(j))/eps

enddo
linear=1

xx(i)=temp
enddo

c do i=1,5
c write(*,800)(b(i,j),j=1,5)
c enddo
800 format(1p5e13.3)

call gelg(5,1,b,e,ier)
if(ier .ne. 0)then

write(*,*)’ill defined b, ier=’,ier
endif

c write(*,*)’correction: ’,e

err=0.
do i=2,5

if(err .lt. abs(e(i)) )err=abs(e(i))
enddo

if(err .gt. 0.1)then
do i=1,5

e(i)=0.1*e(i)/err
enddo

c write(*,*)’scaled to: ’,e
endif

do i=1,5
xx(i)=xx(i)-e(i)

enddo

goto 4
end
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A.2 Calculation of the Probability Function

The most general form of the probability function can be written as:

P (σ,m, n) = c0 + c1σ + c2σ
2, (A.1)

where c0, c1 and c2 are constants. The values of these constants can be found by

the method of Lagrange multipliers, subject to the conditions:

∑
σ=0,∓1

P (σ,m, n) = 1, (A.2)

∑
σ=0,∓1

P (σ,m, n)σ = m, and (A.3)

∑
σ=0,∓1

P (σ,m, n)σ2 = n. (A.4)

However, a more simple way is to proceed by inserting P (σ,m, n) directly into

these constraints. This gives:

3c0 + 2c2 = 1, (A.5)

2c1 = m, (A.6)

2c0 + 2c2 = n. (A.7)

These immediately yield c0 = 1 − n, c1 = m/2, andc2 = (3/2)n − 1. Hence the

probability function is found as:

P (σ,m, n) = (1− n) +
m

2
σ + (

3

2
n− 1)σ2. (A.8)
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