23,620 research outputs found

    Context-aware Authorization in Highly Dynamic Environments

    Get PDF
    Highly dynamic computing environments, like ubiquitous and pervasive computing environments, require frequent adaptation of applications. Context is a key to adapt suiting user needs. On the other hand, standard access control trusts users once they have authenticated, despite the fact that they may reach unauthorized contexts. We analyse how taking into account dynamic information like context in the authorization subsystem can improve security, and how this new access control applies to interaction patterns, like messaging or eventing. We experiment and validate our approach using context as an authorization factor for eventing in Web service for device (like UPnP or DPWS), in smart home security

    Architecture and Implementation of a Trust Model for Pervasive Applications

    Get PDF
    Collaborative effort to share resources is a significant feature of pervasive computing environments. To achieve secure service discovery and sharing, and to distinguish between malevolent and benevolent entities, trust models must be defined. It is critical to estimate a device\u27s initial trust value because of the transient nature of pervasive smart space; however, most of the prior research work on trust models for pervasive applications used the notion of constant initial trust assignment. In this paper, we design and implement a trust model called DIRT. We categorize services in different security levels and depending on the service requester\u27s context information, we calculate the initial trust value. Our trust value is assigned for each device and for each service. Our overall trust estimation for a service depends on the recommendations of the neighbouring devices, inference from other service-trust values for that device, and direct trust experience. We provide an extensive survey of related work, and we demonstrate the distinguishing features of our proposed model with respect to the existing models. We implement a healthcare-monitoring application and a location-based service prototype over DIRT. We also provide a performance analysis of the model with respect to some of its important characteristics tested in various scenarios

    Design and Implementation of S-MARKS: A Secure Middleware for Pervasive Computing Applications

    Get PDF
    As portable devices have become a part of our everyday life, more people are unknowingly participating in a pervasive computing environment. People engage with not a single device for a specific purpose but many devices interacting with each other in the course of ordinary activity. With such prevalence of pervasive technology, the interaction between portable devices needs to be continuous and imperceptible to device users. Pervasive computing requires a small, scalable and robust network which relies heavily on the middleware to resolve communication and security issues. In this paper, we present the design and implementation of S-MARKS which incorporates device validation, resource discovery and a privacy module

    Towards FollowMe User Profiles for Macro Intelligent Environments

    Get PDF
    We envision an Ambient Intelligent Environment as an environment with technology embedded within the framework of that environment to help enhance an users experience in that environment. Existing implementations , while working effectively, are themselves an expensive and time consuming investment. Applying the same expertise to an environment on a monolithic scale is very inefficient, and thus, will require a different approach. In this paper, we present this problem, propose theoretical solutions that would solve this problem, with the guise of experimentally verifying and comparing these approaches, as well as a formal method to model the entire scenario

    In Things We Trust? Towards trustability in the Internet of Things

    Full text link
    This essay discusses the main privacy, security and trustability issues with the Internet of Things

    Security in Pervasive Computing: Current Status and Open Issues

    Get PDF
    Million of wireless device users are ever on the move, becoming more dependent on their PDAs, smart phones, and other handheld devices. With the advancement of pervasive computing, new and unique capabilities are available to aid mobile societies. The wireless nature of these devices has fostered a new era of mobility. Thousands of pervasive devices are able to arbitrarily join and leave a network, creating a nomadic environment known as a pervasive ad hoc network. However, mobile devices have vulnerabilities, and some are proving to be challenging. Security in pervasive computing is the most critical challenge. Security is needed to ensure exact and accurate confidentiality, integrity, authentication, and access control, to name a few. Security for mobile devices, though still in its infancy, has drawn the attention of various researchers. As pervasive devices become incorporated in our day-to-day lives, security will increasingly becoming a common concern for all users - - though for most it will be an afterthought, like many other computing functions. The usability and expansion of pervasive computing applications depends greatly on the security and reliability provided by the applications. At this critical juncture, security research is growing. This paper examines the recent trends and forward thinking investigation in several fields of security, along with a brief history of previous accomplishments in the corresponding areas. Some open issues have been discussed for further investigation
    corecore