27,599 research outputs found

    Bounds on transient instability for complex ecosystems

    Full text link
    Stability is a desirable property of complex ecosystems. If a community of interacting species is at a stable equilibrium point then it is able to withstand small perturbations to component species' abundances without suffering adverse effects. In ecology, the Jacobian matrix evaluated at an equilibrium point is known as the community matrix, which describes the population dynamics of interacting species. A system's asymptotic short- and long-term behaviour can be determined from eigenvalues derived from the community matrix. Here we use results from the theory of pseudospectra to describe intermediate, transient dynamics. We first recover the established result that the transition from stable to unstable dynamics includes a region of `transient instability', where the effect of a small perturbation to species' abundances---to the population vector---is amplified before ultimately decaying. Then we show that the shift from stability to transient instability can be affected by uncertainty in, or small changes to, entries in the community matrix, and determine lower and upper bounds to the maximum amplitude of perturbations to the population vector. Of five different types of community matrix, we find that amplification is least severe when predator-prey interactions dominate. This analysis is relevant to other systems whose dynamics can be expressed in terms of the Jacobian matrix. Our results will lead to improved understanding of how multiple perturbations to a complex system may irrecoverably break stability.Comment: 7 pages, two columns, 3 figures; text improved - Accepted for publication on PLoS On

    Eigenvalue Attraction

    Get PDF
    We prove that the complex conjugate (c.c.) eigenvalues of a smoothly varying real matrix attract (Eq. 15). We offer a dynamical perspective on the motion and interaction of the eigenvalues in the complex plane, derive their governing equations and discuss applications. C.c. pairs closest to the real axis, or those that are ill-conditioned, attract most strongly and can collide to become exactly real. As an application we consider random perturbations of a fixed matrix MM. If MM is Normal, the total expected force on any eigenvalue is shown to be only the attraction of its c.c. (Eq. 24) and when MM is circulant the strength of interaction can be related to the power spectrum of white noise. We extend this by calculating the expected force (Eq. 41) for real stochastic processes with zero-mean and independent intervals. To quantify the dominance of the c.c. attraction, we calculate the variance of other forces. We apply the results to the Hatano-Nelson model and provide other numerical illustrations. It is our hope that the simple dynamical perspective herein might help better understanding of the aggregation and low density of the eigenvalues of real random matrices on and near the real line respectively. In the appendix we provide a Matlab code for plotting the trajectories of the eigenvalues.Comment: v1:15 pages, 12 figures, 1 Matlab code. v2: very minor changes, fixed a reference. v3: 25 pages, 17 figures and one Matlab code. The results have been extended and generalized in various ways v4: 26 pages, 10 figures and a Matlab Code. Journal Reference Added. http://link.springer.com/article/10.1007%2Fs10955-015-1424-

    Sensitivity analysis of hydrodynamic stability operators

    Get PDF
    The eigenvalue sensitivity for hydrodynamic stability operators is investigated. Classical matrix perturbation techniques as well as the concept of epsilon-pseudoeigenvalues are applied to show that parts of the spectrum are highly sensitive to small perturbations. Applications are drawn from incompressible plane Couette, trailing line vortex flow and compressible Blasius boundary layer flow. Parametric studies indicate a monotonically increasing effect of the Reynolds number on the sensitivity. The phenomenon of eigenvalue sensitivity is due to the non-normality of the operators and their discrete matrix analogs and may be associated with large transient growth of the corresponding initial value problem

    Spectral Theory of Sparse Non-Hermitian Random Matrices

    Get PDF
    Sparse non-Hermitian random matrices arise in the study of disordered physical systems with asymmetric local interactions, and have applications ranging from neural networks to ecosystem dynamics. The spectral characteristics of these matrices provide crucial information on system stability and susceptibility, however, their study is greatly complicated by the twin challenges of a lack of symmetry and a sparse interaction structure. In this review we provide a concise and systematic introduction to the main tools and results in this field. We show how the spectra of sparse non-Hermitian matrices can be computed via an analogy with infinite dimensional operators obeying certain recursion relations. With reference to three illustrative examples --- adjacency matrices of regular oriented graphs, adjacency matrices of oriented Erd\H{o}s-R\'{e}nyi graphs, and adjacency matrices of weighted oriented Erd\H{o}s-R\'{e}nyi graphs --- we demonstrate the use of these methods to obtain both analytic and numerical results for the spectrum, the spectral distribution, the location of outlier eigenvalues, and the statistical properties of eigenvectors.Comment: 60 pages, 10 figure
    corecore