6 research outputs found

    Top-k Route Search through Submodularity Modeling of Recurrent POI Features

    Full text link
    We consider a practical top-k route search problem: given a collection of points of interest (POIs) with rated features and traveling costs between POIs, a user wants to find k routes from a source to a destination and limited in a cost budget, that maximally match her needs on feature preferences. One challenge is dealing with the personalized diversity requirement where users have various trade-off between quantity (the number of POIs with a specified feature) and variety (the coverage of specified features). Another challenge is the large scale of the POI map and the great many alternative routes to search. We model the personalized diversity requirement by the whole class of submodular functions, and present an optimal solution to the top-k route search problem through indices for retrieving relevant POIs in both feature and route spaces and various strategies for pruning the search space using user preferences and constraints. We also present promising heuristic solutions and evaluate all the solutions on real life data.Comment: 11 pages, 7 figures, 2 table

    Personalized Travel Itineraries with Multi-access Edge Computing Touristic Services

    Get PDF
    International audienceThe 5G networks enable new touristic services with challenging communication requirements, such as augmented reality (AR) applications, and allow the visitors to enjoy a touristic experience that involves both the physical and virtual space. Here, we propose a novel multiuser travel itinerary planning framework based on an optimal problem formulation that considers both individual trip itinerary (e.g., tourist's preferences, time or cost) and touristic service constraints (e.g., nearby edge cloud resources and application requirements). The main idea is to maximize the itinerary score of individual visitors, while also optimizing the resource allocation at the edge. We consider two services, video streaming and AR, and evaluate our framework using data from Flickr. Results demonstrate gains up to 100% in the resource allocation and user experience in comparison with a state-of-the-art solution adapted to this scenario

    The grass is greener on the other side: understanding the effects of green spaces on Twitter user sentiments

    Get PDF
    Green spaces are believed to improve the well-being of users in urban areas. While there are urban research exploring the emotional benefits of green spaces, these works are based on user surveys and case studies, which are typically small in scale, intrusive, time-intensive and costly. In contrast to earlier works, we utilize a non-intrusive methodology to understand green space effects at large-scale and in greater detail, via digital traces left by Twitter users. Using this methodology, we perform an empirical study on the effects of green spaces on user sentiments and emotions in Melbourne, Australia and our main findings are: (i) tweets in green spaces evoke more positive and less negative emotions, compared to those in urban areas; (ii) each season affects various emotion types differently; (iii) there are interesting changes in sentiments based on the hour, day and month that a tweet was posted; and (iv) negative sentiments are typically associated with large transport infrastructures such as train interchanges, major road junctions and railway tracks. The novelty of our study is the combination of psychological theory, alongside data collection and analysis techniques on a large-scale Twitter dataset, which overcomes the limitations of traditional methods in urban research

    Personalized itinerary recommendation with queuing time awareness

    No full text
    Personalized itinerary recommendation is a complex and time-consuming problem, due to the need to recommend popular attractions that are aligned to the interest preferences of a tourist, and to plan these attraction visits as an itinerary that has to be completed within a specific time limit. Furthermore, many existing itinerary recommendation systems do not automatically determine and consider queuing times at attractions in the recommended itinerary, which varies based on the time of visit to the attraction, e.g., longer queuing times at peak hours. To solve these challenges, we propose the PersQ algorithm for recommending personalized itineraries that take into consideration attraction popularity, user interests and queuing times. We also implement a framework that utilizes geo-tagged photos to derive attraction popularity, user interests and queuing times, which PersQ uses to recommend personalized and queue-aware itineraries. We demonstrate the effectiveness of PersQ in the context of five major theme parks, based on a Flickr dataset spanning nine years. Experimental results show that PersQ outperforms various state-of-the-art baselines, in terms of various queuing-time related metrics, itinerary popularity, user interest alignment, recall, precision and F1-score
    corecore