135 research outputs found

    A Model for Using Physiological Conditions for Proactive Tourist Recommendations

    Full text link
    Mobile proactive tourist recommender systems can support tourists by recommending the best choice depending on different contexts related to herself and the environment. In this paper, we propose to utilize wearable sensors to gather health information about a tourist and use them for recommending tourist activities. We discuss a range of wearable devices, sensors to infer physiological conditions of the users, and exemplify the feasibility using a popular self-quantification mobile app. Our main contribution then comprises a data model to derive relations between the parameters measured by the wearable sensors, such as heart rate, body temperature, blood pressure, and use them to infer the physiological condition of a user. This model can then be used to derive classes of tourist activities that determine which items should be recommended

    Visualization Based on Geographic Information in Augmented Reality

    Get PDF

    Augmented Reality in Tourism – Research and Applications Overview

    Get PDF
    Augmented reality is a complex interdisciplinary field utilizing IT technologies in diverse areas such as medicine, education, architecture, industry, tourism and others, augmenting the real-time, real-world view with additional superimposed information in chosen format(s). The aim of this paper is to present an overview of both research and application aspects of using augmented reality technologies in tourism domain. While most research, and especially applications, are dealing with and developing visual-based augmented reality systems, there is a relevant amount of research discussing the utilization of other human senses such as tactioception and audioception, both being discussed within this work. A comprehensive literature analysis within this paper resulted with the identification, compilation and categorization of the key factors having the most relevant impact on the success of utilization of augmented technology in tourism domain

    Mixed Reality on Mobile Devices

    Get PDF

    A Framework for Constructing and Evaluating the Role of MR as a Holographic Virtual Guide in Museums

    Get PDF
    Mixed reality (MR) is a cutting-edge technology at the forefront of many new applications in the tourism and cultural heritage sector. This study aims to reshape the museum experience by creating a highly engaging and immersive museum experience for visitors combing real-time visual, audio information and computer-generated images with museum artefacts and customer displays. This research introduces a theoretical framework that assesses the potential of MR guidance system in usefulness, ease of use, enjoyment, interactivity, touring and future applications. The evaluation introduces the MuseumEye MR application in the Egyptian Museum, Cairo using mixed method surveys and a sample of 171 participants. The results of the questionnaire highlighted the importance of the mediating the role of the tour guide in enhancing the relationship between perceived usefulness, ease of use, multimedia, UI design, interactivity and the intention of use. Furthermore, the results of this study revealed the potential future use of MR in museums and ensured sustainability and engagement past the traditional visitor museum experience, which heightens the economic state of museums and cultural heritage sectors

    The AREA Algorithm Framework Enabling Location-based Mobile Augmented Reality Applications

    Get PDF
    The dramatically increased computational capabilities of mobile devices have leveraged the opportunities for mobile application engineers. Respective scenarios, in which these opportunities can be exploited, emerge almost per day. In this context, mobile augmented reality applications play an important role in many business scenarios. In the automotive domain, they are mainly used to provide car customers with new experiences. For example, customers can use their own mobile device to experience the interior of a car by moving the mobile device around. The device’s camera then detects interior parts and shows additional information to the customer within the camera view. Although the computational capabilities have been increased, the realization of such mobile augmented reality applications is still a complex endeavor. In particular, the different mobile operating systems and their peculiarities must be carefully considered. In the AREA (Augmented Reality Engine Application) project, a powerful kernel was realized that enables location-based mobile augmented reality applications. This kernel, in turn, mainly focuses on robustness and performance. In addition, it provides a flexible architecture that fosters the development of individual location-based mobile augmented reality applications. As many aspects have to be considered to implement individual applications based on top of AREA, this paper provides the first comprehensive overview of the entire algorithm framework. Moreover, a recently realized algorithm and new features will be presented. To demonstrate the applicability of the kernel, its features are applied in the context of various mobile applications. As the major lesson learned, powerful mobile augmented reality applications can be efficiently run on present mobile operating systems and be effectively realized by engineers using AREA. We consider such mobile frameworks as being crucial to provide more generic concepts that are able to abstract from the peculiarities of the underlying mobile operating system and to support mobile application developers more properly

    Augmented Reality in Forensics and Forensic Medicine - Current Status and Future Prospects

    Full text link
    Forensic investigations require a vast variety of knowledge and expertise of each specialist involved. With the increase in digitization and advanced technical possibilities, the traditional use of a computer with a screen for visualization and a mouse and keyboard for interactions has limitations, especially when visualizing the content in relation to the real world. Augmented reality (AR) can be used in such instances to support investigators in various tasks at the scene as well as later in the investigation process. In this article, we present current applications of AR in forensics and forensic medicine, the technological basics of AR, and the advantages that AR brings for forensic investigations. Furthermore, we will have a brief look at other fields of application and at future developments of AR in forensics

    Enabling Tracks in Location-Based Smart Mobile Augmented Reality Applications

    Get PDF
    To assist users through contemporary mobile technology is demanded in a multitude of scenarios. Interestingly, more and more users crave for mobile assistance in their leisure time. Consequently, the number of mobile applications that support leisure activities increases significantly. Mobile augmented reality applications constitute an example for user assistance that is welcome in these scenarios. In the AREA (Augmented Reality Engine Application) project, we developed a kernel that enables sophisticated location-based mobile augmented reality applications. On top of this kernel, various projects were realized. In many of these projects, a feature to enable tracks was demanded. Tracks, for example, may assist users in the context of mountaineering. The development of an AREA algorithm that enables track handling requires new concepts that are presented in this paper. To demonstrate the performance of the developed algorithm, also results of an experiment are presented. As a lesson learned, mobile augmented reality applications that want to make use of the new algorithm can be efficiently run on present mobile operating systems and be effectively realized by engineers using the AREA framework. Altogether, the new track feature is another valuable step for AREA towards a comprehensive location-based mobile augmented reality framework

    Flexible development of location-based mobile augmented reality applications with AREA

    Get PDF
    Mobile applications have garnered a lot of attention in the last years. The computational capabilities of mobile devices are the mainstay to develop completely new application types. The provision of augmented reality experiences on mobile devices paves one alley in this feld. For example, in the automotive domain, augmented reality applications are used to experience, inter alia, the interior of a car by moving a mobile device around. The device’s camera then detects interior parts and shows additional information to the customer within the camera view. Another application type that is increasingly utilized is related to the combination of serious games with mobile augmented reality functions. Although the latter combination is promising for many scenarios, technically, it is a complex endeavor. In the AREA (Augmented Reality Engine Application) project, a kernel was implemented that enables location-based mobile augmented reality applications. Importantly, this kernel provides a fexible architecture that fosters the development of individual location-based mobile augmented reality applications. The work at hand shows the fexibility of AREA based on a developed serious game. Furthermore, the algorithm framework and major features of it are presented. As the conclusion of this paper, it is shown that mobile augmented reality applications require high development eforts. Therefore, fexible frameworks like AREA are crucial to develop respective applications in a reasonable time
    corecore