6 research outputs found

    Enabling the Adoption of Wearable Computers in Enterprises - Results of Analyzing Influencing Factors and Challenges in the Industrial Sector

    Get PDF
    Wearable computers like smart glasses or smartwatches enable the use of information systems in application scenarios in which information technology has rarely been used until now. The reason for this is, that users are able to interact with the devices hands-free, e.g. by using voice commands. A hands-free use is in particular relevant for enterprises in the industrial sector, as industrial workers often need to perform tasks manually, e.g. in manufacturing or maintenance. However, the technology is currently not used widely in enterprises. Thus, the aim of our research is to identify influencing factors and related challenges of using wearable computers in order to analyze how its adoption can be increased. Based on an empirical interview study within the industrial sector, we identified 11 influencing factors and 25 related challenges which affect the adoption of wearable computers

    Pedestrian Detection with Wearable Cameras for the Blind: A Two-way Perspective

    Full text link
    Blind people have limited access to information about their surroundings, which is important for ensuring one's safety, managing social interactions, and identifying approaching pedestrians. With advances in computer vision, wearable cameras can provide equitable access to such information. However, the always-on nature of these assistive technologies poses privacy concerns for parties that may get recorded. We explore this tension from both perspectives, those of sighted passersby and blind users, taking into account camera visibility, in-person versus remote experience, and extracted visual information. We conduct two studies: an online survey with MTurkers (N=206) and an in-person experience study between pairs of blind (N=10) and sighted (N=40) participants, where blind participants wear a working prototype for pedestrian detection and pass by sighted participants. Our results suggest that both of the perspectives of users and bystanders and the several factors mentioned above need to be carefully considered to mitigate potential social tensions.Comment: The 2020 ACM CHI Conference on Human Factors in Computing Systems (CHI 2020

    DESIGN AND IMPLEMENTATION OF A COLLABORATIVE SMARTWATCH APPLICATION SUPPORTING EMPLOYEES IN INDUSTRIAL WORKFLOWS

    Get PDF
    Due to new technological developments and the availability of affordable wearable devices like smartwatches, which recently hit the consumer market, employees in the corporate context can benefit from ubiquitous access to information. Especially in industrial production, there are complex and high involving workflows, which require the collaboration of multiple persons spread over different divisions. In such scenarios, fast and reliable communication is difficult and often disturbs work. Since smartwatches can be worn permanently on the body and the em-ployee has non-disruptive access to information without the use of hands, such devices offer big potential for seamless support and guidance within a service system. In this paper, we identify a representative problem composed of a quality assurance process with practical relevance and design and implement an information system based on smartwatches in a design science ap-proach. Since we infer meta-requirements for our system from the results of qualitative studies, the needs of employees are strongly considered and the developed software can be applied in a broad class of related problems. Finally, we evaluate the created meta-artifact in the identified scenario in order to obtain insights and knowledge about building information systems based on smartwatches for collaborative workflow support

    DESIGNING AND IMPLEMENTING ACCESSIBLE WEARABLE INTERACTIONS FOR PEOPLE WITH MOTOR IMPAIRMENTS

    Get PDF
    Emerging wearable technologies like fitness bands, smartwatches, and head-mounted displays (HMDs) are entering the mainstream market. Unlike smartphones and tablets, these wearables, worn on the body or clothing, are always available and have the potential to provide quick access to information [7]. For instance, HMDs can provide relatively hands-free interaction compared to smartphones, and smartwatches and activity trackers can collect continuous health and fitness-related information of their wearer. However, there are over 20 million people in the U.S. with upper body motor impairments [133], who may not be able to gain from the potential benefits of these wearables. For example, the small interaction spaces of smartwatches may present accessibility challenges. Yet, few studies have explored the potential impacts or evaluated the accessibility of these wearables or investigated ways to design accessible wearable interactions for people with motor impairments. To inform the design of future wearable technologies, my dissertation investigates three threads of research: (1) assessing the accessibility of wearable technologies like HMDs, smartwatches and fitness trackers; (2) understanding the potential impacts of sharing automatically tracked fitness-related information for people with mobility impairments; and (3) implementing and evaluating accessible interactions for HMDs and smartwatches. As part of my first research thread, I conducted two formative studies investigating the accessibility of HMDs and fitness trackers and found that people with motor impairments experienced accessibility challenges like problematic form factors, irrelevant data tracking and difficulty with existing input. For my second research thread, I investigated the potential impacts of sharing automatically tracked data from fitness trackers with peers with similar impairments and therapists and presented design opportunities to build tools to support sharing. Towards my third research thread, I addressed the earlier issues identified with HMD accessibility by building custom wearable touchpads to control a commercial HMD. Next, I explored the touchscreen and non-touchscreen areas (bezel, wristband and user’s body) of smartwatches for accessible interaction. And, lastly, I built and compared bezel input with touchscreen input for accessible smartwatch interaction. The techniques implemented and evaluated in this dissertation will enable more equitable and independent use of wearable technologies for people with motor impairments

    Personalized, Wearable Control of a Head-mounted Display for Users with Upper Body Motor Impairments

    No full text
    Head-mounted displays provide relatively hands-free interaction that could improve mobile computing access for users with motor impairments. To investigate this largely unexplored area, we present two user studies. The first, smaller study evaluated the accessibility of Google Glass, a head-mounted display, with 6 participants. Findings revealed potential benefits of a head-mounted display yet demonstrated the need for alternative means of controlling Glass—3 of the 6 participants could not use it at all. We then conducted a second study with 12 participants to evaluate a potential alternative input mechanism that could allow for accessible control of a head-mounted display: switch-based wearable touchpads that can be affixed to the body or wheelchair. The study assessed input performance with three sizes of touchpad, investigated personalization patterns when participants were asked to place the touchpads on their body or wheelchair, and elicited subjective responses. All 12 participants were able to use the touchpads to control the display, and patterns of touchpad placement point to the value of personalization in providing support for each user’s motor abilities. Author Keywords Motor impairments; wearables; mobile accessibility

    Design Principles of Mobile Information Systems in the Digital Transformation of the Workplace - Utilization of Smartwatch-based Information Systems in the Corporate Context

    Get PDF
    During the last decades, smartwatches emerged as an innovative and promising technology and hit the consumer market due to the accessibility of affordable devices and predominant acceptance caused by the considerable similarity to common wristwatches. With the unique characteristics of permanent availability, unobtrusiveness, and hands-free operation, they can provide additional value in the corporate context. Thus, this thesis analyzes use cases for smartwatches in companies, elaborates on the design of smartwatch-based information systems, and covers the usability of smartwatch applications during the development of smartwatch-based information systems. It is composed of three research complexes. The first research complex focuses on the digital assistance of (mobile) employees who have to execute manual work and have been excluded so far from the benefits of the digitalization since they cannot operate hand-held devices. The objective is to design smartwatch-based information systems to support workflows in the corporate context, facilitate the daily work of numerous employees, and make processes more efficient for companies. During a design science research approach, smartwatch-based software artifacts are designed and evaluated in use cases of production, support, security service, as well as logistics, and a nascent design theory is proposed to complement theory according to mobile information system research. The evaluation shows that, on the one hand, smartwatches have enormous potential to assist employees with a fast and ubiquitous exchange of information, instant notifications, collaboration, and workflow guidance while they can be operated incidentally during manual work. On the other hand, the design of smartwatch-based information systems is a crucial factor for successful long-term deployment in companies, and especially limitations according to the small form-factor, general conditions, acceptance of the employees, and legal regulations have to be addressed appropriately. The second research complex addresses smartwatch-based information systems at the office workplace. This broadens and complements the view on the utilization of smartwatches in the corporate context in addition to the mobile context described in the first research complex. Though smartwatches are devices constructed for mobile use, the utilization in low mobile or stationary scenarios also has benefits due they exhibit the characteristic of a wearable computer and are directly connected to the employee’s body. Various sensors can perceive employee-, environment- and therefore context-related information and demand the employees’ attention with proactive notifications that are accompanied by a vibration. Thus, a smartwatch-based and gamified information system for health promotion at the office workplace is designed and evaluated. Research complex three provides a closer look at the topic of usability concerning applications running on smartwatches since it is a crucial factor during the development cycle. As a supporting element for the studies within the first and second research complex, a framework for the usability analysis of smartwatch applications is developed. For research, this thesis contributes a systemization of the state-of-the-art of smartwatch utilization in the corporate context, enabling and inhibiting influence factors of the smartwatch adoption in companies, and design principles as well as a nascent design theory for smartwatch-based information systems to support mobile employees executing manual work. For practice, this thesis contributes possible use cases for smartwatches in companies, assistance in decision-making for the introduction of smartwatch-based information systems in the corporate context with the Smartwatch Applicability Framework, situated implementations of a smartwatch-based information system for typical use cases, design recommendations for smartwatch-based information systems, an implementation of a smartwatch-based information system for the support of mobile employees executing manual work, and a usability-framework for smartwatches to automatically access usability of existing applications providing suggestions for usability improvement
    corecore