54 research outputs found

    The Partial Evaluation Approach to Information Personalization

    Get PDF
    Information personalization refers to the automatic adjustment of information content, structure, and presentation tailored to an individual user. By reducing information overload and customizing information access, personalization systems have emerged as an important segment of the Internet economy. This paper presents a systematic modeling methodology - PIPE (`Personalization is Partial Evaluation') - for personalization. Personalization systems are designed and implemented in PIPE by modeling an information-seeking interaction in a programmatic representation. The representation supports the description of information-seeking activities as partial information and their subsequent realization by partial evaluation, a technique for specializing programs. We describe the modeling methodology at a conceptual level and outline representational choices. We present two application case studies that use PIPE for personalizing web sites and describe how PIPE suggests a novel evaluation criterion for information system designs. Finally, we mention several fundamental implications of adopting the PIPE model for personalization and when it is (and is not) applicable.Comment: Comprehensive overview of the PIPE model for personalizatio

    Science of Digital Libraries(SciDL)

    Get PDF
    Our purpose is to ensure that people and institutions better manage information through digital libraries (DLs). Thus we address a fundamental human and social need, which is particularly urgent in the modern Information (and Knowledge) Age. Our goal is to significantly advance both the theory and state-of-theart of DLs (and other advanced information systems) - thoroughly validating our approach using highly visible testbeds. Our research objective is to leverage our formal, theory-based approach to the problems of defining, understanding, modeling, building, personalizing, and evaluating DLs. We will construct models and tools based on that theory so organizations and individuals can easily create and maintain fully functional DLs, whose components can interoperate with corresponding components of related DLs. This research should be highly meritorious intellectually. We bring together a team of senior researchers with expertise in information retrieval, human-computer interaction, scenario-based design, personalization, and componentized system development and expect to make important contributions in each of those areas. Of crucial import, however, is that we will integrate our prior research and experience to achieve breakthrough advances in the field of DLs, regarding theory, methodology, systems, and evaluation. We will extend the 5S theory, which has identified five key dimensions or onstructs underlying effective DLs: Streams, Structures, Spaces, Scenarios, and Societies. We will use that theory to describe and develop metamodels, models, and systems, which can be tailored to disciplines and/or groups, as well as personalized. We will disseminate our findings as well as provide toolkits as open source software, encouraging wide use. We will validate our work using testbeds, ensuring broad impact. We will put powerful tools into the hands of digital librarians so they may easily plan and configure tailored systems, to support an extensible set of services, including publishing, discovery, searching, browsing, recommending, and access control, handling diverse types of collections, and varied genres and classes of digital objects. With these tools, end-users will for be able to design personal DLs. Testbeds are crucial to validate scientific theories and will be thoroughly integrated into SciDL research and evaluation. We will focus on two application domains, which together should allow comprehensive validation and increase the significance of SciDL's impact on scholarly communities. One is education (through CITIDEL); the other is libraries (through DLA and OCKHAM). CITIDEL deals with content from publishers (e.g, ACM Digital Library), corporate research efforts e.g., CiteSeer), volunteer initiatives (e.g., DBLP, based on the database and logic rogramming literature), CS departments (e.g., NCSTRL, mostly technical reports), educational initiatives (e.g., Computer Science Teaching Center), and universities (e.g., theses and dissertations). DLA is a unit of the Virginia Tech library that virtually publishes scholarly communication such as faculty-edited journals and rare and unique resources including image collections and finding aids from Special Collections. The OCKHAM initiative, calling for simplicity in the library world, emphasizes a three-part solution: lightweightprotocols, component-based development, and open reference models. It provides a framework to research the deployment of the SciDL approach in libraries. Thus our choice of testbeds also will nsure that our research will have additional benefit to and impact on the fields of computing and library and information science, supporting transformations in how we learn and deal with information

    Adaptive hypertext and hypermedia : proceedings of the 2nd workshop, Pittsburgh, Pa., June 20-24, 1998

    Get PDF

    Adaptive hypertext and hypermedia : proceedings of the 2nd workshop, Pittsburgh, Pa., June 20-24, 1998

    Get PDF

    Generic adaptation framework for unifying adaptive web-based systems

    Get PDF
    The Generic Adaptation Framework (GAF) research project first and foremost creates a common formal framework for describing current and future adaptive hypermedia (AHS) and adaptive webbased systems in general. It provides a commonly agreed upon taxonomy and a reference model that encompasses the most general architectures of the present and future, including conventional AHS, and different types of personalization-enabling systems and applications such as recommender systems (RS) personalized web search, semantic web enabled applications used in personalized information delivery, adaptive e-Learning applications and many more. At the same time GAF is trying to bring together two (seemingly not intersecting) views on the adaptation: a classical pre-authored type, with conventional domain and overlay user models and data-driven adaptation which includes a set of data mining, machine learning and information retrieval tools. To bring these research fields together we conducted a number GAF compliance studies including RS, AHS, and other applications combining adaptation, recommendation and search. We also performed a number of real systems’ case-studies to prove the point and perform a detailed analysis and evaluation of the framework. Secondly it introduces a number of new ideas in the field of AH, such as the Generic Adaptation Process (GAP) which aligns with a layered (data-oriented) architecture and serves as a reference adaptation process. This also helps to understand the compliance features mentioned earlier. Besides that GAF deals with important and novel aspects of adaptation enabling and leveraging technologies such as provenance and versioning. The existence of such a reference basis should stimulate AHS research and enable researchers to demonstrate ideas for new adaptation methods much more quickly than if they had to start from scratch. GAF will thus help bootstrap any adaptive web-based system research, design, analysis and evaluation

    Behavioral Effects in Consumer Evaluations of Recommendation Systems

    Get PDF

    Web collaboration for software engineering

    Get PDF
    Tese de mestrado integrado. Engenharia Informática e Computação. Faculdade de Engenharia. Universidade do Porto. 200
    • …
    corecore