5,892 research outputs found

    Personalised privacy in pervasive and ubiquitous systems

    Get PDF
    Our world is edging closer to the realisation of pervasive systems and their integration in our everyday life. While pervasive systems are capable of offering many benefits for everyone, the amount and quality of personal information that becomes available raise concerns about maintaining user privacy and create a real need to reform existing privacy practices and provide appropriate safeguards for the user of pervasive environments. This thesis presents the PERSOnalised Negotiation, Identity Selection and Management (PersoNISM) system; a comprehensive approach to privacy protection in pervasive environments using context aware dynamic personalisation and behaviour learning. The aim of the PersoNISM system is twofold: to provide the user with a comprehensive set of privacy protecting tools and to help them make the best use of these tools according to their privacy needs. The PersoNISM system allows users to: a) configure the terms and conditions of data disclosure through the process of privacy policy negotiation, which addresses the current “take it or leave it” approach; b) use multiple identities to interact with pervasive services to avoid the accumulation of vast amounts of personal information in a single user profile; and c) selectively disclose information based on the type of information, who requests it, under what context, for what purpose and how the information will be treated. The PersoNISM system learns user privacy preferences by monitoring the behaviour of the user and uses them to personalise and/or automate the decision making processes in order to unburden the user from manually controlling these complex mechanisms. The PersoNISM system has been designed, implemented, demonstrated and evaluated during three EU funded projects

    Quality of experience in affective pervasive environments

    Get PDF
    The confluence of miniaturised powerful devices, widespread communication networks and mass remote storage has caused a fundamental shift in the user interaction design paradigm. The distinction between system and user in pervasive environments is evolving into an increasingly integrated loop of interaction, raising a number of opportunities to provide enhanced and personalised experiences. We propose a platform, based on a smart architecture, to address the identified opportunities in pervasive computing. Smart systems aim at acting upon an environment for improving quality of experience: a subjective measure that has been defined as an emotional reaction to products or services. The inclusion of an emotional dimension allows us to measure individual user responses and deliver personalised services with the potential to influence experiences positively. The platform, Cloud2Bubble, leverages pervasive systems to aggregate user and environment data with the goal of addressing personal preferences and supra-functional requirements. This, combined with its societal implications, results in a set of design principles as a concrete fruition of design contractualism. In particular, this thesis describes: - a review of intelligent ubiquitous environments and relevant technologies, including a definition of user experience as a dynamic affective construct; - a specification of main components for personal data aggregation and service personalisation, without compromising privacy, security or usability; - the implementation of a software platform and a methodological procedure for its instantiation; - an evaluation of the developed platform and its benefits for urban mobility and public transport information systems; - a set of design principles for the design of ubiquitous systems, with an impact on individual experience and collective awareness. Cloud2Bubble contributes towards the development of affective intelligent ubiquitous systems with the potential to enhance user experience in pervasive environments. In addition, the platform aims at minimising the risk of user digital exposure while supporting collective action.Open Acces

    Ubiquitous systems and the family: Thoughts about the networked home

    Get PDF
    Developments in ubiquitous and pervasive computing herald a future in which computation is embedded into our daily lives. Such a vision raises important questions about how people, especially families, will be able to engage with and trust such systems whilst maintaining privacy and individual boundaries. To begin to address such issues, we have recently conducted a wide reaching study eliciting trust, privacy and identity concerns about pervasive computing. Over three hundred UK citizens participated in 38 focus groups. The groups were shown Videotaped Activity Scenarios [11] depicting pervasive or ubiquitous computing applications in a number of contexts including shopping. The data raises a number of important issues from a family perspective in terms of access, control, responsibility, benefit and complexity. Also findings highlight the conflict between increased functionality and the subtle social interactions that sustain family bonds. We present a Pre-Concept Evaluation Tool (PRECET) for use in design and implementation of ubicomp systems

    Privacy, security, and trust issues in smart environments

    Get PDF
    Recent advances in networking, handheld computing and sensor technologies have driven forward research towards the realisation of Mark Weiser's dream of calm and ubiquitous computing (variously called pervasive computing, ambient computing, active spaces, the disappearing computer or context-aware computing). In turn, this has led to the emergence of smart environments as one significant facet of research in this domain. A smart environment, or space, is a region of the real world that is extensively equipped with sensors, actuators and computing components [1]. In effect the smart space becomes a part of a larger information system: with all actions within the space potentially affecting the underlying computer applications, which may themselves affect the space through the actuators. Such smart environments have tremendous potential within many application areas to improve the utility of a space. Consider the potential offered by a smart environment that prolongs the time an elderly or infirm person can live an independent life or the potential offered by a smart environment that supports vicarious learning

    Anticipatory Mobile Computing: A Survey of the State of the Art and Research Challenges

    Get PDF
    Today's mobile phones are far from mere communication devices they were ten years ago. Equipped with sophisticated sensors and advanced computing hardware, phones can be used to infer users' location, activity, social setting and more. As devices become increasingly intelligent, their capabilities evolve beyond inferring context to predicting it, and then reasoning and acting upon the predicted context. This article provides an overview of the current state of the art in mobile sensing and context prediction paving the way for full-fledged anticipatory mobile computing. We present a survey of phenomena that mobile phones can infer and predict, and offer a description of machine learning techniques used for such predictions. We then discuss proactive decision making and decision delivery via the user-device feedback loop. Finally, we discuss the challenges and opportunities of anticipatory mobile computing.Comment: 29 pages, 5 figure

    Using Ubicomp systems for exchanging health information : considering trust and privacy issues

    Get PDF
    Ambient Intelligence (AmI) and ubiquitous computing allow us to consider a future where computation is embedded into our daily social lives. This vision raises its own important questions and augments the need to understand how people will trust such systems and at the same time achieve and maintain privacy. As a result, we have recently conducted a wide reaching study of people’s attitudes to potential AmI scenarios. This research project investigates the concepts of trust and privacy issues specifically related to the exchange of health, financial, shopping and e-voting information when using AmI system. The method used in the study and findings related to the health scenario will be discussed in this paper and discussed in terms of motivation and social implications

    Tumult and turmoil : privacy in an ambient world

    Get PDF
    Ambient Intelligence (AmI) and ubiquitous computing allow us to consider a future where computation is embedded into our daily social lives. This vision raises its own important questions. Our own interest in privacy predates this impending vision, but nonetheless holds a great deal of relevance there. As a result, we have recently conducted a wide reaching study of people’s attitudes to potential AmI scenarios with a view to eliciting their privacy concerns. The approach and findings will be discussed

    Personalisation and recommender systems in digital libraries

    Get PDF
    Widespread use of the Internet has resulted in digital libraries that are increasingly used by diverse communities of users for diverse purposes and in which sharing and collaboration have become important social elements. As such libraries become commonplace, as their contents and services become more varied, and as their patrons become more experienced with computer technology, users will expect more sophisticated services from these libraries. A simple search function, normally an integral part of any digital library, increasingly leads to user frustration as user needs become more complex and as the volume of managed information increases. Proactive digital libraries, where the library evolves from being passive and untailored, are seen as offering great potential for addressing and overcoming these issues and include techniques such as personalisation and recommender systems. In this paper, following on from the DELOS/NSF Working Group on Personalisation and Recommender Systems for Digital Libraries, which met and reported during 2003, we present some background material on the scope of personalisation and recommender systems in digital libraries. We then outline the working group’s vision for the evolution of digital libraries and the role that personalisation and recommender systems will play, and we present a series of research challenges and specific recommendations and research priorities for the field
    • 

    corecore