9,976 research outputs found

    Personal and Ubiquitous Computing

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/45920/1/779_2004_Article_306.pd

    Exploring Mediated Interactions: A Design Exercise

    Get PDF
    With the emergence of personal and ubiquitous computing systems in the last decade, interaction designers have started designing products by employing quality oriented aspects such as user experience, playfulness, enchantment and others. In order to explore novel forms of mediated interactions, designers need to focus beyond the basic user requirements and usability issues. We present a procedure and results of a design exercise that we carried out with students of a master’s course on Visual Design. Our intention was to explore new forms of mediated interaction by using a specific design exercise. We provide the details of the resulted design concepts and discuss the usefulness of our design exercise

    e-ESAS: Evolution of a Participatory Design-based Solution for Breast Cancer (BC) Patients in Rural Bangladesh

    Get PDF
    Healthcare facility is scarce for rural women in the developing world. The situation is worse for patients who are suffering from diseases that require long-term feedback-oriented monitoring such as breast cancer. Lack of motivation to go to the health centers on patients’ side due to sociocultural barriers, financial restrictions and transportation hazards results in inadequate data for proper assessment. Fortunately, mobile phones have penetrated the masses even in rural communities of the developing countries. In this scenario, a mobile phone-based remote symptom monitoring system (RSMS) with inspirational videos can serve the purpose of both patients and doctors. Here, we present the findings of our field study conducted on 39 breast cancer patients in rural Bangladesh. Based on the results of extensive field studies, we have categorized the challenges faced by patients in different phases of the treatment process. As a solution, we have designed, developed and deployed e-ESAS—the first mobile-based RSMS in rural context. Along with the detail need assessment of such a system, we describe the evolution of e-ESAS and the deployment results. We have included the unique and useful design lessons that we learned as e-ESAS evolved through participatory design process. The findings show how e-ESAS addresses several challenges faced by patients and doctors and positively impact their lives

    Ubiquitous emotion-aware computing

    Get PDF
    Emotions are a crucial element for personal and ubiquitous computing. What to sense and how to sense it, however, remain a challenge. This study explores the rare combination of speech, electrocardiogram, and a revised Self-Assessment Mannequin to assess people’s emotions. 40 people watched 30 International Affective Picture System pictures in either an office or a living-room environment. Additionally, their personality traits neuroticism and extroversion and demographic information (i.e., gender, nationality, and level of education) were recorded. The resulting data were analyzed using both basic emotion categories and the valence--arousal model, which enabled a comparison between both representations. The combination of heart rate variability and three speech measures (i.e., variability of the fundamental frequency of pitch (F0), intensity, and energy) explained 90% (p < .001) of the participants’ experienced valence--arousal, with 88% for valence and 99% for arousal (ps < .001). The six basic emotions could also be discriminated (p < .001), although the explained variance was much lower: 18–20%. Environment (or context), the personality trait neuroticism, and gender proved to be useful when a nuanced assessment of people’s emotions was needed. Taken together, this study provides a significant leap toward robust, generic, and ubiquitous emotion-aware computing

    The challenges of mobile devices for human computer interaction

    Get PDF
    Current mobile computing devices such as palmtop computers, personal digital assistants (PDAs) and mobile phones, and future devices such as Bluetooth and GSM enabled cameras, and music players have many implications for the design of the user interface. These devices share a common problem: attempting to give users access to powerful computing services and resources through small interfaces, which typically have tiny visual displays, poor audio interaction facilities and limited input techniques. They also introduce new challenges such as designing for intermittent and expensive network access, and design for position awareness and context sensitivity. No longer can designers base computing designs around the traditional model of a single user working with a personal computer at his/her workplace. In addition to mobility and size requirements, mobile devices will also typically be used by a larger population spread than traditional PCs and without any training or support networks, whether formal or informal. Furthermore, unlike early computers which had many users per computer, and PCs with usually one computer per user, a single user is likely to own many mobiles devices [1] which they interact with indifferent ways and for different tasks

    Family memories in the home: contrasting physical and digital mementos

    Get PDF
    We carried out fieldwork to characterise and compare physical and digital mementos in the home. Physical mementos are highly valued, heterogeneous and support different types of recollection. Contrary to expectations, we found physical mementos are not purely representational, and can involve appropriating common objects and more idiosyncratic forms. In contrast, digital mementos were initially perceived as less valuable, although participants later reconsidered this. Digital mementos were somewhat limited in function and expression, largely involving representational photos and videos, and infrequently accessed. We explain these digital limitations and conclude with design guidelines for digital mementos, including better techniques for accessing and integrating these into everyday life, allowing them to acquire the symbolic associations and lasting value that characterise their physical counterparts

    Wearable and mobile devices

    Get PDF
    Information and Communication Technologies, known as ICT, have undergone dramatic changes in the last 25 years. The 1980s was the decade of the Personal Computer (PC), which brought computing into the home and, in an educational setting, into the classroom. The 1990s gave us the World Wide Web (the Web), building on the infrastructure of the Internet, which has revolutionized the availability and delivery of information. In the midst of this information revolution, we are now confronted with a third wave of novel technologies (i.e., mobile and wearable computing), where computing devices already are becoming small enough so that we can carry them around at all times, and, in addition, they have the ability to interact with devices embedded in the environment. The development of wearable technology is perhaps a logical product of the convergence between the miniaturization of microchips (nanotechnology) and an increasing interest in pervasive computing, where mobility is the main objective. The miniaturization of computers is largely due to the decreasing size of semiconductors and switches; molecular manufacturing will allow for “not only molecular-scale switches but also nanoscale motors, pumps, pipes, machinery that could mimic skin” (Page, 2003, p. 2). This shift in the size of computers has obvious implications for the human-computer interaction introducing the next generation of interfaces. Neil Gershenfeld, the director of the Media Lab’s Physics and Media Group, argues, “The world is becoming the interface. Computers as distinguishable devices will disappear as the objects themselves become the means we use to interact with both the physical and the virtual worlds” (Page, 2003, p. 3). Ultimately, this will lead to a move away from desktop user interfaces and toward mobile interfaces and pervasive computing

    Alternate endings: using fiction to explore design futures

    Get PDF
    Design research and practice within HCI is inherently oriented toward the future. However, the vision of the future described by HCI researchers and practitioners is typically utility-driven and focuses on the short term. It rarely acknowledges the potentially complex social and psychological long-term consequences of the technology artefacts produced. Thus, it has the potential to unintentionally cause real harm. Drawing on scholarship that investigates the link between fiction and design, this workshop will explore “alternate endings” to contemporary HCI papers. Attendees will use fictional narratives to envision long-term consequences of contemporary HCI projects, as a means for engaging the CHI community in a consideration of the values and implications of interactive technology

    Fifty shades of CHI: the perverse and humiliating human-computer relationship

    Get PDF
    This paper presents a critical lens on the nature of the relationship between people and contemporary technology. Specifically, the form and language of erotic BDSM romance fiction, a genre that deals specifically with the nature of power in relationships, and which has proved extremely popular recently, are used as a means for provoking reflection on the nature of power in the human-computer relationship. Three sexually explicit scenarios are presented, in which technology is portrayed in a dominant and controlling role, highlighting the often subservient and apologetic nature of human interaction with technology. We suggest that readers offended by graphic and explicit descriptions of sexual behaviour do not read further than this abstract

    A Model for Using Physiological Conditions for Proactive Tourist Recommendations

    Full text link
    Mobile proactive tourist recommender systems can support tourists by recommending the best choice depending on different contexts related to herself and the environment. In this paper, we propose to utilize wearable sensors to gather health information about a tourist and use them for recommending tourist activities. We discuss a range of wearable devices, sensors to infer physiological conditions of the users, and exemplify the feasibility using a popular self-quantification mobile app. Our main contribution then comprises a data model to derive relations between the parameters measured by the wearable sensors, such as heart rate, body temperature, blood pressure, and use them to infer the physiological condition of a user. This model can then be used to derive classes of tourist activities that determine which items should be recommended
    corecore