2,407 research outputs found

    Robust Multi-Person Tracking from Moving Platforms

    Get PDF
    In this paper, we address the problem of multi-person tracking in busy pedestrian zones, using a stereo rig mounted on a mobile platform. The complexity of the problem calls for an integrated solution, which extracts as much visual information as possible and combines it through cognitive feedback. We propose such an approach, which jointly estimates camera position, stereo depth, object detection, and tracking. We model the interplay between these components using a graphical model. Since the model has to incorporate object-object interactions, and temporal links to past frames, direct inference is intractable. We therefore propose a two-stage procedure: for each frame we first solve a simplified version of the model (disregarding interactions and temporal continuity) to estimate the scene geometry and an overcomplete set of object detections. Conditioned on these results, we then address object interactions, tracking, and prediction in a second step. The approach is experimentally evaluated on several long and difficult video sequences from busy inner-city locations. Our results show that the proposed integration makes it possible to deliver stable tracking performance in scenes of realistic complexity

    Large Scale Real-World Multi-Person Tracking

    Full text link
    This paper presents a new large scale multi-person tracking dataset -- \texttt{PersonPath22}, which is over an order of magnitude larger than currently available high quality multi-object tracking datasets such as MOT17, HiEve, and MOT20 datasets. The lack of large scale training and test data for this task has limited the community's ability to understand the performance of their tracking systems on a wide range of scenarios and conditions such as variations in person density, actions being performed, weather, and time of day. \texttt{PersonPath22} dataset was specifically sourced to provide a wide variety of these conditions and our annotations include rich meta-data such that the performance of a tracker can be evaluated along these different dimensions. The lack of training data has also limited the ability to perform end-to-end training of tracking systems. As such, the highest performing tracking systems all rely on strong detectors trained on external image datasets. We hope that the release of this dataset will enable new lines of research that take advantage of large scale video based training data.Comment: ECCV 202

    Person tracking with non-overlapping multiple cameras

    Get PDF
    Monitoring and tracking of any target in a surveillance system is an important task. When these targets are human then this problem comes under person identification and tracking. At present, large scale smart video surveillance system is an essential component for any commercial or public campus. Since field of view (FOV) of a camera is limited; for large area monitoring, multiple cameras are needed at different locations. This paper proposes a novel model for tracking a person under multiple non-overlapping cameras. It builds the reference signature of the person at the beginning of the tracking system to match with the upcoming signatures captured by other cameras within the specified area of observation with the help of trained support vector machine (SVM) between two cameras. For experiments, wide area re-identification dataset (WARD) and a real-time scenario have been used with color, shape and texture features for person's re-identification

    Unsupervised Multiple Person Tracking using AutoEncoder-Based Lifted Multicuts

    Full text link
    Multiple Object Tracking (MOT) is a long-standing task in computer vision. Current approaches based on the tracking by detection paradigm either require some sort of domain knowledge or supervision to associate data correctly into tracks. In this work, we present an unsupervised multiple object tracking approach based on visual features and minimum cost lifted multicuts. Our method is based on straight-forward spatio-temporal cues that can be extracted from neighboring frames in an image sequences without superivison. Clustering based on these cues enables us to learn the required appearance invariances for the tracking task at hand and train an autoencoder to generate suitable latent representation. Thus, the resulting latent representations can serve as robust appearance cues for tracking even over large temporal distances where no reliable spatio-temporal features could be extracted. We show that, despite being trained without using the provided annotations, our model provides competitive results on the challenging MOT Benchmark for pedestrian tracking
    • …
    corecore