54 research outputs found

    Cooperative control of multi-uavs under communication constraints.

    Get PDF
    This research aims to develop an analysis and control methodology for the multiple un-manned aerial vehicles (UAVs), connected over a communication network. The wireless communication network between the UAVs is vulnerable to errors and time delays, which may lead to performance degradation or even instability. Analysis on the effects of the potential communication constraints in the multiple UAV control is a critical issue for successful operation of multiple UAVs. Therefore, this thesis proposes a systematic method by incorporating three steps: proposing the analysis method and metrics considering the wireless communication dynamics, designing the structure of the cooperative controller for UAVs, and applying the analysis method to the proposed control in representative applications. For simplicity and general insights on the effect of communication topology, a net-worked system is first analysed without considering the agent or communication dynamics. The network theory specifies important characteristics such as robustness, effectiveness, and synchronisability with respect to the network topology. This research not only reveals the trade-off relationship among the network properties, but also proposes a multi-objective optimisation (MOO) method to find the optimal network topology considering these trade-offs. Extending the analysis to the networked control system with agent and communication dynamics, the effect of the network topology with respect to system dynamics and time delays should be considered. To this end, the effect of communication dynamics is then analysed in the perspective of robustness and performance of the controller. The key philosophy behind this analysis is to approximate the networked control system as a transfer function, and to apply the concepts such as stability margin and sensitivity function in the control theory. Through the analysis, it is shown that the information sharing between the agents to determine their control input deteriorates the robustness of their stability against system uncertainties. In order to compensate the robustness and cancel out the effect of uncertainties, this thesis also develops two different adaptive control methods. The proposed adaptive control methods in this research aim to cope with unmatched uncertainty and time-varying parameter uncertainty, respectively. The effect of unmatched uncertainty is reduced on the nominal performance of the controller, using the parameter-robust linear quadratic Gaussian method and adaptive term. On the other hand, time-varying parameter uncertainty is estimated without requiring the persistent excitation using concurrent learning with the directional forgetting algorithm. The stability of the tracking and parameter estimation error is proved using Lyapunov analysis. The proposed analysis method and control design are demonstrated in two application examples of a formation control problem without any physical interconnection between the agents, and an interconnected slung-load transportation system. The performance of the proposed controllers and the effect of topology and delay on the system performance are evaluated either analytically or numerically.PhD in Aerospac

    Formation control of autonomous vehicles with emotion assessment

    Get PDF
    Autonomous driving is a major state-of-the-art step that has the potential to transform the mobility of individuals and goods fundamentally. Most developed autonomous ground vehicles (AGVs) aim to sense the surroundings and control the vehicle autonomously with limited or no driver intervention. However, humans are a vital part of such vehicle operations. Therefore, an approach to understanding human emotions and creating trust between humans and machines is necessary. This thesis proposes a novel approach for multiple AGVs, consisting of a formation controller and human emotion assessment for autonomous driving and collaboration. As the interaction between multiple AGVs is essential, the performance of two multi-robot control algorithms is analysed, and a platoon formation controller is proposed. On the other hand, as the interaction between AGVs and humans is equally essential to create trust between humans and AGVs, the human emotion assessment method is proposed and used as feedback to make autonomous decisions for AGVs. A novel simulation platform is developed for navigating multiple AGVs and testing controllers to realise this concept. Further to this simulation tool, a method is proposed to assess human emotion using the affective dimension model and physiological signals such as an electrocardiogram (ECG) and photoplethysmography (PPG). The experiments are carried out to verify that humans' felt arousal and valence levels could be measured and translated to different emotions for autonomous driving operations. A per-subject-based classification accuracy is statistically significant and validates the proposed emotion assessment method. Also, a simulation is conducted to verify AGVs' velocity control effect of different emotions on driving tasks

    Exploiting Heterogeneity in Networks of Aerial and Ground Robotic Agents

    Get PDF
    By taking advantage of complementary communication technologies, distinct sensing functionalities and varied motion dynamics present in a heterogeneous multi-robotic network, it is possible to accomplish a main mission objective by assigning specialized sub-tasks to specific members of a robotic team. An adequate selection of the team members and an effective coordination are some of the challenges to fully exploit the unique capabilities that these types of systems can offer. Motivated by real world applications, we focus on a multi-robotic network consisting off aerial and ground agents which has the potential to provide critical support to humans in complex settings. For instance, aerial robotic relays are capable of transporting small ground mobile sensors to expand the communication range and the situational awareness of first responders in hazardous environments. In the first part of this dissertation, we extend work on manipulation of cable-suspended loads using aerial robots by solving the problem of lifting the cable-suspended load from the ground before proceeding to transport it. Since the suspended load-quadrotor system experiences switching conditions during this critical maneuver, we define a hybrid system and show that it is differentially-flat. This property facilitates the design of a nonlinear controller which tracks a waypoint-based trajectory associated with the discrete states of the hybrid system. In addition, we address the case of unknown payload mass by combining a least-squares estimation method with the designed controller. Second, we focus on the coordination of a heterogeneous team formed by a group of ground mobile sensors and a flying communication router which is deployed to sense areas of interest in a cluttered environment. Using potential field methods, we propose a controller for the coordinated mobility of the team to guarantee inter-robot and obstacle collision avoidance as well as connectivity maintenance among the ground agents while the main goal of sensing is carried out. For the case of the aerial communications relays, we combine antenna diversity with reinforcement learning to dynamically re-locate these relays so that the received signal strength is maintained above a desired threshold. Motivated by the recent interest of combining radio frequency and optical wireless communications, we envision the implementation of an optical link between micro-scale aerial and ground robots. This type of link requires maintaining a sufficient relative transmitter-receiver position for reliable communications. In the third part of this thesis, we tackle this problem. Based on the link model, we define a connectivity cone where a minimum transmission rate is guaranteed. For example, the aerial robot has to track the ground vehicle to stay inside this cone. The control must be robust to noisy measurements. Thus, we use particle filters to obtain a better estimation of the receiver position and we design a control algorithm for the flying robot to enhance the transmission rate. Also, we consider the problem of pairing a ground sensor with an aerial vehicle, both equipped with a hybrid radio-frequency/optical wireless communication system. A challenge is positioning the flying robot within optical range when the sensor location is unknown. Thus, we take advantage of the hybrid communication scheme by developing a control strategy that uses the radio signal to guide the aerial platform to the ground sensor. Once the optical-based signal strength has achieved a certain threshold, the robot hovers within optical range. Finally, we investigate the problem of building an alliance of agents with different skills in order to satisfy the requirements imposed by a given task. We find this alliance, known also as a coalition, by using a bipartite graph in which edges represent the relation between agent capabilities and required resources for task execution. Using this graph, we build a coalition whose total capability resources can satisfy the task resource requirements. Also, we study the heterogeneity of the formed coalition to analyze how it is affected for instance by the amount of capability resources present in the agents
    • …
    corecore