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Abstract

This research aims to develop an analysis and control methodology for the multiple un-

manned aerial vehicles (UAVs), connected over a communication network. The wireless

communication network between the UAVs is vulnerable to errors and time delays, which

may lead to performance degradation or even instability. Analysis on the effects of the

potential communication constraints in the multiple UAV control is a critical issue for suc-

cessful operation of multiple UAVs. Therefore, this thesis proposes a systematic method

by incorporating three steps: proposing the analysis method and metrics considering the

wireless communication dynamics, designing the structure of the cooperative controller

for UAVs, and applying the analysis method to the proposed control in representative

applications.

For simplicity and general insights on the effect of communication topology, a net-

worked system is first analysed without considering the agent or communication dynam-

ics. The network theory specifies important characteristics such as robustness, effective-

ness, and synchronisability with respect to the network topology. This research not only

reveals the trade-off relationship among the network properties, but also proposes a multi-

objective optimisation (MOO) method to find the optimal network topology considering

these trade-offs.

Extending the analysis to the networked control system with agent and communica-

tion dynamics, the effect of the network topology with respect to system dynamics and

time delays should be considered. To this end, the effect of communication dynamics is

then analysed in the perspective of robustness and performance of the controller. The key

philosophy behind this analysis is to approximate the networked control system as a trans-
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fer function, and to apply the concepts such as stability margin and sensitivity function in

the control theory.

Through the analysis, it is shown that the information sharing between the agents to

determine their control input deteriorates the robustness of their stability against system

uncertainties. In order to compensate the robustness and cancel out the effect of uncer-

tainties, this thesis also develops two different adaptive control methods. The proposed

adaptive control methods in this research aim to cope with unmatched uncertainty and

time-varying parameter uncertainty, respectively. The effect of unmatched uncertainty is

reduced on the nominal performance of the controller, using the parameter-robust linear

quadratic Gaussian method and adaptive term. On the other hand, time-varying parameter

uncertainty is estimated without requiring the persistent excitation using concurrent learn-

ing with the directional forgetting algorithm. The stability of the tracking and parameter

estimation error is proved using Lyapunov analysis.

The proposed analysis method and control design are demonstrated in two application

examples of a formation control problem without any physical interconnection between

the agents, and an interconnected slung-load transportation system. The performance of

the proposed controllers and the effect of topology and delay on the system performance

are evaluated either analytically or numerically.

Keywords
Unmanned Aerial Vehicle, Network Theory, Networked Control System, Adaptive Con-
trol, Formation Control, Slung-Load Transportation System
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Chapter 1

Introduction

1.1 Background and Motivation

Recently, incorporating multiple unmanned aerial vehicles (UAVs) is getting increasing

attention for its versatile applications for both military and civilian uses. In multi-UAV

operations, the importance of the wireless communication network is increasing corre-

spondingly. The wireless communication network among the multiple UAVs enhances

the scalability and reliability by eliminating the necessity to be connected to the ground

station directly. However, the more the UAVs are dependent on each others’ commu-

nication network, the more the performance could be degraded by the communication

constraints, such as transmission range, bandwidth, error, and time delay [1]. The prob-

lem is even more crucial for small UAVs using unreliable sensors and transmitters due

to their limited payload or cost effectiveness. Depending on the control design or system

dynamics, even a trivial uncertainty may evoke cascading effects over the whole network

of UAVs and eventually the failure of the mission [2]. The necessity and challenges to

cope with this issue have been numerously emphasised in various applications including

military systems [3, 4], urban deployments [5], and civilian uses [6].

There have been numerous works indirectly related with this issue. On the control of

UAVs, many control techniques, such as robust control and adaptive control, have been

1



2 CHAPTER 1. INTRODUCTION

proposed to handle the systems with uncertainties. On the communication dynamics,

there have been attempts in the field of network calculus to model the departures and

arrivals of data packets. The network calculus is an attempt to model the communication

in the data packet level and quantify the service curves. Ciucu and Fidler [7, 8, 9] reviewed

deterministic and stochastic network calculus. Whereas deterministic network calculus

provides conservative bounds to the service curve, stochastic network calculus estimates

the bounds into feasible regions using probability functions. Jiang and Liu [10] focused

on stochastic network calculus, and Lin et al. [11] reviewed the application of stochastic

network calculus.

However, the linkage between the two fields of study has been hardly studied to an-

swer the question: how much effect the communication dynamics has on the control of

UAVs. The reasons behind would include that it has been only recent years that the opera-

tion of networked UAVs has been getting dramatic attention, compared with the develop-

ment of classical control theory. Also, it is difficult to combine these fields of study as the

communication dynamics is nonlinear, stochastic, and finite-field [12] to be considered in

analysing the control of UAVs.

In the view of control design for UAVs, the focus would be the impact of wireless

communication on the control metrics such as robustness and performance, rather than

the detailed behaviours of data packets in the communication. This research first aims to

propose a systematic approach to analyse and design the networked UAVs with consid-

erations of communication dynamics, by combining the concepts of control theory and

network theory. This research then concentrates on developing control algorithms, which

can retain desirable robustness and performance, for the networked multiple UAVs.

1.2 Research Objectives

The main objectives of this research fall into two folds: the first objective is to propose

a systematic approach to consider communication dynamics into the analysis of the net-
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worked UAV system and the second to develop its control algorithms that guarantee de-

sirable performance. The analysis method is proposed to quantify the effects of com-

munication topology and dynamics on the robustness and performance of the networked

UAVs. Adaptive control algorithms are then proposed to alleviate the effects of uncertain-

ties that propagate through the network, based on the analysis results. Specific objectives

are suggested as:

1. Analysis on networked system In order to obtain a general idea on the analysis, the

characteristics of a general networked system without considering communication

and UAV dynamics are analysed with respect to different network topologies.

2. Analysis on networked control system Extending the analysis to communication

and system dynamics, the robustness and performance measures of the networked

control system are defined. The effect of communication and UAV dynamics is

analysed with respect to different network topologies.

3. Adaptive control design for unmatched uncertainties To compensate the robust-

ness and performance metrics obtained from the analysis method, the controller is

designed. An adaptive control technique is proposed to cope with the unmatched

uncertainties that propagate through the network. The unmatched uncertainties may

occur from the physical interconnection between the agents, such as in slung-load

transportation system.

4. Adaptive control design for time-varying uncertainties Another adaptive control

technique is designed to handle the time-varying uncertainties without requiring

persistent excitation.

5. Application Two application examples are presented to validate the analysis frame-

work and the proposed control methods: formation control and slung-load sys-

tem. The numerical simulations on the representative application examples are

conducted to support the analysis.
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1.3 Theoretical Basis

This section presents some important theories closely relevant to the main objective of this

thesis: combination of network theory and control theory. The detailed literature review

with respect to each specific objectives is given in the rest of the thesis where relevant.

First, the network theory is the study of graphs, which are composed of nodes and

edges. The networked system of multiple UAVs with communication among them can

be formulated as a graph; neglecting the detailed communication and UAV dynamics, the

properties in the network theory can be applied directly. The concepts in the network

theory have been developed in numerous fields of study, such as computational science,

electrical engineering, economics, and operational research. The important traditional

concepts include Laplace matrix, centrality measure, geodesic path, and percolation phe-

nomenon [13]. These concepts are used throughout the thesis, but especially for the anal-

ysis on networked system.

With consideration of communication and system dynamics, the study on networked

control systems has been developed. Developed relatively recently compared with net-

work theory, the studies on networked control systems focus on the effect of communica-

tion on the control or estimation of each vehicles composing the network. The challeng-

ing issues include band-limited channels, sampling time, delay, and packet dropouts [14].

One of the main objectives of this thesis is to develop an analysis method to quantify the

robustness and performance of the networked control system.

In the control theory, the concepts of stability, stability margin, and sensitivity func-

tion of multi-input-multi-output (MIMO) system are mainly utilised for the robustness

and performance metrics [15]. Also, for the control design, model-reference adaptive

control (MRAC) method and LQ-based controllers [16, 17] are used. More relevant con-

trol concepts and techniques to specific objectives are introduced in the rest of the thesis.
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Optimisation for Multi-
Agent Network Resilience

Chapter 3:
A Priori Multi-Objective 
Optimisation Using the 
Evolutionary Game Theory

Chapter 5:
Parameter-Robust Linear 
Quadratic Gaussian for 
Multi-Agent Slung-Load 
Transportation

Chapter 6:
Control Synthesis for Multi-
UAV Slung-Load Systems 
with Uncertainties

Chapter 4:
Analysis on the Networked 
Multi-Agent System with 
Communication Constraints

Chapter 7:
Concurrent Learning 
Adaptive Control with 
Directional Forgetting

Objective 1: Analysis on 
Networked System

Objective 2: Analysis on 
Networked Control System

Objectives 3 & 4: Control Design for 
Unmatched / Time-Varying Uncertainties

Verification on method

Slung-load model

Need to cope with
unmatched 
uncertainties

Need to cope with
time-varying
uncertainties

Extension to 
communication / 
system dynamics

Conference Paper:
Stability Analysis on the 
Networked Multi-Agent 
System

Extension

Figure 1.1: Main structure of the thesis

1.4 Thesis Overview and Contributions

This thesis is paper-based and hence the rest of this thesis from Chapter 2 to 7 is com-

posed of six main papers. Each of the chapters contains its abstract and introduction,

providing the context of the research, relevant literature, and contributions to this thesis.

The methodology, results, and conclusions of the chapters are consistent with the publi-

cations, except for some changes in the notation and terminology for their completeness

and consistency.

The connections between the chapters, papers, and research objectives are illustrated



6 CHAPTER 1. INTRODUCTION

in Fig. 1.1. The major chapters closely related with each research objectives 1, 2, 3 and

4 are Chapters 2, 4, 6 and 7, respectively. Chapter 2 deals with the analysis of networked

system, and later extended to the networked control system in Chapter 4. Chapters 6 and 7

propose control methods for unmatched and time-varying uncertainties, respectively. The

rest of the chapters support these main chapters; Chapter 3 further verifies the proposed

method in Chapter 2, and Chapter 5 provides mathematical model of slung-load system

for Chapter 6. The research objective 5 is handled in the overall chapters and then sum-

marised in Chapter 8: general discussions. Each blocks in Fig. 1.1 are briefly overviewed,

underpinning the contributions of each publications.

Chapter 2

• Title: Evolutionary Game Based Multi-Objective Optimisation for Multi-Agent

Network Resilience

• Conference: 30th Congress of the International Council of the Aeronautical Sci-

ences (ICAS2016), Daejeon, Korea, 2016

Chapter 2 is presented to achieve the research objective: analysis on networked sys-

tem. Without considering the communication or system dynamics, the main properties of

a general networked system are analysed. In addition to analysing the network properties

with respect to different network topologies, the optimal network topology is obtained

by formulating the problem into a multi-objective optimisation (MOO) problem. A new

MOO method is proposed to solve the problem, which uses the evolutionary game theory

(EGT) to consider the trade-offs between the objective functions.

The contribution of this chapter is threefold. First, the main contribution on this thesis

is that a general idea on the effect of network topology is obtained. The trade-offs be-

tween the network topologies suggest that the extension to the networked control systems

may also retain similar characteristics. This corresponds to the conclusions of Chapter

4. Second, in the view of network theory, this research suggests a guideline to design
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the network topology considering the trade-offs between the network properties. This

is applicable not only to networked UAV systems, but also to various fields including

multi-agent systems, sensor network, or automated highway systems. Third, in the per-

spective of MOO methods, the proposed EGT based method is newly proposed to solve a

MOO problem, considering the trade-offs between the objective functions. The proposed

method is further developed and verified in Chapter 3.

Chapter 3

• Title: A Priori Multi-Objective Optimisation Using the Evolutionary Game Theory

• Journal: European Journal of Operational Research

Status: In revision to submit

In Chapter 3, the proposed MOO method in Chapter 2 is extended and verified. The

applicability of the method is not limited to the networked control as in Chapter 2, but

extended to general benchmark problems. As the main objective of the proposed EGT

based MOO method is to consider the trade-offs of the objective functions in optimisation,

the concept of trade-off and EGT related notions are detailed. The method is validated

with well-known benchmark MOO problems, comparing with other MOO methods.

In this thesis, this chapter is a supporting part for Chapter 2, providing the method-

ological approach for optimising the network topology. However, the main contribution

on this research lies in solving the MOO problems in a simple way to consider the trade-

offs. The optimal decision variables can be computed in consistent computational time,

regardless of the complexity of the MOO problems.

Chapter 4

• Title: Stability Analysis on the Networked Multi-Agent System

• Journal: IEEE Transactions on Automatic Control

Status: Submitted
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Chapter 4 mainly focuses on the analysis on the networked control system. A new

analysis method is proposed to consider the networked control system as a single transfer

function, which enables to quantify the robustness of system stability and the performance

metrics. The application of the analysis method on case studies suggest the effect of

network topology, communication dynamics, and agent dynamics on the analysis metrics.

The result reveals the trade-offs between the robustness and performance metrics, and

often instability depending on the network topology and system dynamics.

The contribution of this chapter is twofold. First, the contribution of this research

on the thesis is that the effect of network topology on the robustness and performance

of the controller is obtained. The trade-off relationship together with Chapter 2 provides

a guide to design a network. Second, another contribution on the thesis is the effect of

system dynamics on the system stability. Depending on the networked system dynamics

– including agent dynamics, controller, and communication dynamics – the networked

control system could be unstable or the stability margin could be critical. This suggests the

controller to be carefully designed to suppress the effects of uncertainties to compensate

the critical stability margins, supporting the rationale behind Chapters 5 to 7.

Conference Paper

• Title: Stability Analysis on the Networked Multi-Agent System

• Conference: European Control Conference (ECC2018), Limassol, Cyprus, 2018

This research is conducted to achieve the research objective: analysis on the net-

worked control system. The analysis in Chapter 2 is extended to consider the communi-

cation and system dynamics, and the analysis metrics are changed to control theory based

metrics. The analysis on delay margins of simple agent dynamics and initial simulation

results have been presented, and the analysis is later extended to other robustness and

performance metrics and simulation results in Chapter 4. The main results and findings

of this paper are therefore incorporated in Chapter 4.
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Chapter 5

• Title: Parameter-Robust Linear Quadratic Gaussian Technique for Multi-Agent

Slung-Load Transportation

• Journal: Aerospace Science and Technology

Status: Published, Vol. 71, pp. 119-127, 2017

In Chapter 5, the slung-load transportation system with multiple UAVs is introduced,

which contains unmatched structured uncertainties. The slung-load dynamics is modelled

using spherical coordinates, and the modelling is verified with numerical simulations. The

controller is designed with parameter-robust linear quadratic Gaussian (PRLQG) method

to obtain the nominal control performance with respect to different payload variations.

This chapter is a supporting part of Chapter 6, where the modelling of the slung-load

dynamics and the PRLQG-based baseline controller are used. The contribution on the

modelling part is that the slung-load system is modelled with minimal state-space repre-

sentation, which enables to apply the optimal control methods directly. Also, consider-

ation of the slung-load system as an application example is a challenging but important

point in this thesis, as the physical interconnections between the UAVs influence on the

stability of the networked control system and may create unmatched uncertainties.

Note that this paper has been submitted in 2014, but gone through major corrections

since 2016. The modelling part has been conducted before the PhD study, and the de-

tailed analysis on the PRLQG control method has been added during the PhD. This paper

provides the mathematical model and baseline controller for Chapter 6, which proposes a

control synthesis for unmatched and nonlinear uncertainties.

Chapter 6

• Title: Control Synthesis for Multi-UAV Slung-Load Systems with Uncertainties

• Conference: European Control Conference (ECC2018), Limassol, Cyprus, 2018
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Chapter 6 is presented for the research objective: adaptive control design for un-

matched uncertainties. The control design is extended from Chapter 5 to model-reference

adaptive control (MRAC) in order to cope with both unmatched and matched uncertain-

ties. The stability condition of the tracking and parameter estimation error is proven with

Lyapunov stability analysis.

The main contribution of this chapter is that the controller is designed to suppress the

effects of unmatched as well as matched nonlinear uncertainties on the stability of the net-

worked control system. As the results in Chapter 4 suggest that the stability margin of the

networked control systems could be critically low, it is beneficial to design the controllers

to retain its nominal performance under the existence of potential type of uncertainties.

Chapter 7

• Title: Concurrent Learning Adaptive Control with Directional Forgetting

• Journal: IEEE Transactions on Automatic Control

Status: In revision to resubmit

In Chapter 7, the adaptive control method is designed to cope with time-varying un-

certainties. The concurrent learning method with directional forgetting algorithm is used

to relax the persistent excitation requirement while identifying time-varying parameters.

The sufficient and necessary conditions for Lyapunov and exponential stability of the

tracking and parameter estimation error are derived.

The contribution of the chapter is the design of the controller to suppress the effects

of time-varying parameters. In this thesis, the control method can be used to compensate

the critical stability margins of the networked control system, as stated in Chapter 4. The

proposed control technique is also expected to be applicable to other systems with time-

varying parameters, where the persistent excitation is not guaranteed.
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Chapter 2

Evolutionary Game Based

Multi-Objective Optimisation for

Multi-Agent Network Resilience

Abstract

This research presents multi-objective optimisation (MOO) problem for network resilience.

The scale free core-periphery structure is parameterised to formulate the network proper-

ties as objective functions. Optimising the conflicting network properties, an evolutionary

game based approach is used to find the weightings of the weighted sum method. Numer-

ical results show the optimal weightings and network structures depending on the size of

network.

2.1 Introduction

Modern aerospace technologies often incorporate complex structures of networks. The

more complicated and intensive the dependency on network connection is, the more

the functionality suffers from node failure or communication malfunction. Furthermore,

13
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wireless communication networks are vulnerable to the cyber-physical failure. It is an im-

portant issue to model the failing vertices as a percolation process and to design a resilient

topology in autonomous operations.

There have been several attempts to find robust and efficient networks. Motter et

al. [18] have addressed the conflict between robustness and synchronisability, and other

properties including global and local efficiency have been detailed later [19]. As an option

to improve the overall network properties, Peixoto et al. [20] propose the core-periphery

topology, but the detailed topology and consideration of conflicting network properties

remain illusive.

This chapter aims to find the network topology for enhancing network properties,

considering the networked system without any dynamics. The main idea is to formulate

this issue into a MOO problem, where the conflicting properties of network are objective

functions and the topology of network is a decision variable. As the full topology is

determined by a large number of variables, this research proposes a single parameter

design method assuming scale free core-periphery network.

Solving the formulated MOO problem, this chapter suggests to use the evolution-

ary game based MOO method [21]. It is based on the weighted-sum method, while the

weightings are determined by an evolutionary game. The main advantage is the consid-

eration of solution’s survivability in the other criteria without any expert decision or use

of aggregation coefficient while providing low computational load. The main contribu-

tion thus lies in suggesting a new perspective on formulating the resilient network and

applying a suitable MOO method, which has not been applied comprehensively.

This chapter is composed as follows: the first part summarises the definitions and

characteristics of scale free core-periphery topology. Then finding the optimal network

structure is formulated into MOO problem. The evolutionary game based method is ex-

plained in section 2.4, and examined through numerical simulations in section 2.5. Fi-

nally, conclusions and future works are addressed.
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2.2 Scale Free Core-Periphery Network

2.2.1 Definition

The core-periphery network with N nodes is defined with core nodes and periphery nodes

[22]. Defining the fraction of core nodes as fcore, core nodes of the number N fcore are

connected with each other, and peripheral nodes of the rest are connected randomly either

to the core or to the periphery. Note that fcore is determined so that N fcore is an integer.

The number of edges connected to each node is decided by the total degree k. The

scale free network follows the power-law distribution, defined with the probability and

cumulative density function, p(k) and P(K) respectively:

p(k) =
k−γ

ζ (γ;kmin)−ζ (γ;N)

P(K) =
ζ (γ;kmin)−ζ (γ;K +1)

ζ (γ;kmin)−ζ (γ;N)

ζ (γ;a),
∞

∑
k=a

k−γ '
a−γ+1

γ−1

(2.1)

where γ is an exponent in the power-law distribution, and ζ (γ;a) is the Hurwitz zeta

function for normalisation. The long-tail effect of the probability distribution is eliminated

by constraining the degree kmin ≤ k ≤ N−1 [13].

The structure of scale free core-periphery network is thus determined by three pa-

rameters: fcore, kmin and γ . By the definition of core-periphery nodes, the probability of

k ≥ N fcore−1 is fcore, which means the cumulative density function satisfies

ζ (γ;kmin)−ζ (γ;N fcore)

ζ (γ;kmin)−ζ (γ;n)
= 1− fcore (2.2)

Also, the average degree is fixed for that the unlimited degree enhances all the theo-
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retical properties. The average degree can be computed as

〈k〉=
ζ (γ;kmin)−ζ (γ +1;N)

ζ (γ;kmin)−ζ (γ;N)
(2.3)

where 〈·〉 denotes the average value. From the definition of the Hurwitz zeta function,

existence of the average degree requires γ > 2.

(a) Homogeneous Network (b) Heterogeneous Network

Figure 2.1: Visualisation of the scale free networks

Using Eqn. (2.2) and Eqn. (2.3), fcore and kmin are computed from γ , where the average

degree 〈k〉 is fixed. Therefore, the design of network is simplified into a single-parameter

problem with γ . Increase in γ results in large kmin, and the network has homogeneous

degree over the nodes. On the contrary, decrease in γ yields a heterogeneous network with

highly concentrated nodes. The number of core nodes remains similar, but the number of

periphery nodes connected directly to the core is larger in heterogeneous networks than

in the homogeneous. Both homogeneous and heterogeneous networks are visualised in

Fig. 2.1 using the Pajek program [23]. While 〈k〉 is fixed to 3, Fig. 2.1 (a) is plotted

with γ = 5 and (b) with γ = 3. Although the size of network is large – a hundred – the

visualisation clearly shows homogeneity and heterogeneity respectively.
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2.2.2 Properties

The network properties are classified into three main categories – robustness, efficiency

and synchronisability [18, 19] – which are derived from the percolation process.

The percolation process is crucial in understanding the network properties, especially

robustness. The percolation is a phenomenon where some fraction of nodes and edges

are removed. The analysis on the percolation phenomenon in the generated network en-

ables to model the cyber-physical failure of the autonomous system and to compute the

remaining network functionality. From this analysis, the size of the largest cluster with

respect to the occupational probability is obtained, where the cluster is defined with the

groups of nodes connected to each other and the occupational probability is the portion of

remaining nodes [13].

Robustness is the ability of a network to maintain its function under the presence of

failure by taking a detour or multi-hop communication. The value is determined by the

area of S–φ plot below the critical size of the largest cluster, Sc:

J1 =
∫ Sc

0
φdS (2.4)

where φ is the probability of the percolation.

Efficiency is the measure of how the nodes communicate their information each other.

The global efficiency is proportional to the closeness centrality, which is the average

length of a geodesic path di j as,

J2 =
(〈

di j
〉)−1 (2.5)

where i and j are the indices of nodes.

Synchronisability depends on the speed of diffusion along the connections, which is
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determined by the eigenvalues of the Laplacian matrix L,

J3 =
λN

λ2
,

dψ

dt
+ cLψ = 0 (2.6)

where ψ is the network state, c is the diffusion rate constant, λN is the maximum eigen-

value, and λ2 is the minimum non-zero eigenvalue of the Laplacian matrix.

Note that the network properties chosen are not explicitly expressed as functions of γ .

Instead, the properties are computed with respect to various γ with Monte-Carlo simula-

tion, and fitted into second-order polynomial.

2.3 Multi-Objective Optimisation Problem Formulation

To find the optimal network structure, an optimisation problem is formulated with its

objective functions set as the network properties. As the design of network depends on a

single parameter, the MOO problem is formulated as

max
γ

J1,J2,J3

subject to γ > 2
(2.7)

The objective functions may conflict with each other; enhancement in one objective

deteriorates at least one of the rests. The weighted sum method aggregates multiple

weighted objectives into a single cost function as

max
γ

J = w1J1 +w2J2 +w3J3

subject to γ > 2
(2.8)

This method is the most widely used thanks to its simplicity [24], but difficulties

arise when determining the weightings, which are resolved in this research by using the

evolutionary game theory (EGT).
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2.4 Evolutionary Game Based Multi-Objective Optimi-

sation

2.4.1 Payoff Matrix

The core concept of the evolutionary game based MOO method is that the optimisation

problem is a type of non-cooperative game. Among the conflicting objectives, improving

an objective deteriorates at least one of the others. One needs to consider both gain and

loss of choosing which objective to be optimised. optimising the ratios of gain to loss,

called trade-offs, it is expected that more weighting is applied to the objectives that are

sensitive to the choice of which objective to be optimised. It is compared to the concept

of equilibrium in the game theory.

Finding the equilibrium in a non-cooperative game requires analysing the players’

utility to formulate a payoff matrix [25]. The decision variables and cost functions act as

players, and which objectives to be optimised are the possible strategies. The weightings

of a MOO problem correspond to the Nash equilibrium of the mixed strategies. There-

fore, the payoff matrix is composed such that objective functions comprise the rows and

optimal decision variables with respect to each criterion are substituted to the columns.

For the problem formulation in Eqn. (3.3), the payoff matrix A is composed as

A =


J1(γ

∗
1 ) J1(γ

∗
2 ) J1(γ

∗
3 )

J2(γ
∗
1 ) J2(γ

∗
2 ) J2(γ

∗
3 )

J3(γ
∗
1 ) J3(γ

∗
2 ) J3(γ

∗
3 )

 (2.9)

where γ∗i is the optimal γ for the i-th objective.

The normalisation method and the form of cost function affect the characteristics of

the payoff matrix. Different scales of each cost function have an effect of varying absolute

and relative importance, and thus the cost functions are normalised in each step. The
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normalised payoff matrix Ā is composed as

Āi j =
Ji(γ

∗
i )− J−i

J+i − J−i
(2.10)

where J+i and J−i are the maximum and minimum value of i-th objective respectively.

2.4.2 Replicator Equation

Using the payoff matrix, the fitness of mixed strategies pi evolves in each time step

through the replicator equation,

ṗi = pi(eiApT − pAT p) (2.11)

where ei ∈ R3 is a vector with one at the i-th element and zeros at the other.

The evolutionary stable solution p̄ is computed with an augmented matrix as

p̄T

a

=

 A −13×1

−11×3 0


−103×1

1

 (2.12)

where a is an auxiliary constant to match the matrix dimension.

A single solution exists when the augmented matrix is invertible. If the problem is

singular, infinitely many solutions exist but the average solution is used. The stability

of the dynamics is determined by the eigenvalues of the payoff matrix, and guarantee of

stability is easily shown in the MOO problems [26].

2.5 Optimal Network Structure

The optimal network structure is obtained from the proposed approach. The algorithm of

the proposed approach is summarised in Fig. 2.2. Given the average degree 〈k〉, objective

functions for the optimisation problem are derived. Then, optimal degree exponent γ

is obtained using the evolutionary game based MOO method. The optimal leads to the
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Figure 2.2: Algorithm of the evolutionary game based MOO method

Network Parameter Value Description

N 100 The number of nodes

γmax 5 Upper bound of exponent

〈k〉0 30 Initial average degree

∆〈k〉 3 Change in average degree

Table 2.1: Network parameter specification

optimal structure of the network.

Numerical simulation is conducted with different 〈k〉’s. Physical limit of multi-agent

network such as transmission power and coverage decides 〈k〉; for instance, given the

fixed transmission power, spread of the networked vehicles reduces 〈k〉. Exploiting the

advantage of the propose approach that the weightings are determined dynamically, the

simulation is composed with reducing 〈k〉 as:

〈k〉= 〈k〉0−∆〈k〉 t (2.13)

where t is the simulation time. The values of simulation parameters are specified in Table
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(a) Average at 1≤ t ≤ 10

(b) Average and variance at t = 10

Figure 2.3: Objective functions – network properties

Table 2.1.

The objective functions are obtained with Monte-Carlo simulations with 10 runs gen-

erating the different networks and same degree distribution, and then are fitted into second-

order polynomial. In the MOO part, each single objective optimisation is conducted us-

ing ’fmincon’ from MATLAB. The evolutionary stable solutions are evolved 100 times at

each run.

The objective functions with respect to γ are shown in Fig. 2.3. Three figures show

different network properties – robustness, efficiency, and synchronisability. In Fig. 2.3 (a),

the brightness of the lines indicates the simulation time. Whereas the change in robustness

stays similar throughout the simulation, efficiency and synchronisability varies in their

minimum and maximum values. It can be concluded that efficiency and synchronisability

are more sensitive to network structure when the transmission power is small or requires

large coverage area. Since the relationships between the network properties and γ is

obtained only by numerical simulations, the variance of Monte-Carlo simulation at the
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Figure 2.4: Results of the evolutionary game based MOO method

time step t = 10 is shown in Fig. 2.3 (b).

Using the obtained objective functions, the evolutionary game based MOO method

is implemented. The resultant optimal weightings, decision variable, and cost are shown

in Fig. 2.4. In Fig. 2.4 (a), the weightings on robustness decrease while efficiency and

synchronisability increases almost simultaneously with the decrease of 〈k〉. This corre-

sponds to the fact that efficiency and synchronisability are more sensitive in the later part

of simulations. Increase of weightings on sensitive cost functions implies that the evolu-

tionary game base approach is successfully considering the trade-offs. In Fig. 2.4 (b), the

optimal network structure is implied by optimal γ . It is more advantageous to formulate a

homogenous network when the transmission power is not enough or desired coverage is

broad, while a heterogeneous network is better in the other case.

For validating the performance of evolutionary game based approach, the optimisa-

tion result using uniform weightings, one third on each objective function, is compared.

Fig. 2.4 (b) shows that similar optimal network structures are obtained in each method,

but Fig. 2.4 (c) shows that the evolutionary game based approach results in the increase

of maximum weighted cost.

2.6 Conclusions

In this chapter, design of scale free core-periphery networks is formulated into a single

parameter problem, and the network properties are optimised using the evolutionary game



24 CHAPTER 2. EGMOO FOR MULTI-AGENT NETWORK RESILIENCE

based MOO method. Numerical simulation is conducted with different average degrees,

which are relevant to the size of network by the transmission power or coverage. The

results suggest that a homogeneous network is advantageous in a concentrated network

with either sufficient transmission power or narrow coverage, whereas a heterogeneous

network is of more importance in the other case. The parameter of the network structure

is given by the optimal exponent of the degree distribution. This research is expected to

suggest a guide for designing a topology in the various fields including multi-agent or

sensor network design.

Further studies are focused on mobile network system. Most of the previous works on

mobile networks [26, 27] have been dedicated to maximise connectivity, which is similar

to synchronisability, not considering the other properties. The results often result in a

rendezvous formation without a constraint on coverage. We expect that controlling the

multiple agents to form an optimal degree distribution from this research may suggest

more robust, efficient and fast synchronising network.
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Chapter 3

A Priori Multi-Objective Optimisation

Using the Evolutionary Game Theory

Abstract

This chapter develops an a priori Multi-Objective Optimisation (MOO) approach based

on the evolutionary game theory (EGT). One of the main challenges in the a priori MOO

approaches is determination of the weightings of each objective. In this chapter, the prob-

lem of determining the weightings is formulated as an evolutionary game of optimal solu-

tions of individual single-objective optimisation problems and weightings are obtained by

solving this game. The properties of the proposed evolutionary game based approach are

also investigated through trade-off analysis. The analysis results suggest that the proposed

approach determines the weightings such that the trade-offs at the corresponding solution

of the MOO problem becomes identical. As a part of validation, numerical simulations are

performed with well-known benchmark MOO problems. The simulation results confirm

that the analysis results are valid.

27
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3.1 Introduction

MOO refers to the process of simultaneously optimising a set of more than one objective

in a systematic manner [28] and is also known as vector optimisation, multi-objective

programming, or multi-criteria optimisation. The application of MOO is ubiquitous, e.g.,

engineering design, operational management, strategic management, public sector plan-

ning, and etc. [29]. The objectives in the MOO problems are generally conflicting and

these problems seldom have a unique solution [30]. Consequently, it is often non-trivial

and difficult to solve MOO problems.

Because of an extensive range of applications and inherent complexity of MOO, there

have been comprehensive researches on MOO algorithms [31]. Depending on when the

user-preference is utilised, MOO algorithms can be classified into three categories: a

priori, a posteriori, or interactive [32]. a priori methods heavily rely on the preference

information and usually yield a single optimal solution, whereas a posteriori methods

find multiple non-dominated solutions without any prior information. The resultant set of

non-dominated solutions, defined as Pareto-optimal set [33], allows the decision maker to

select a solution in accordance with his/her preference. Combining the characteristics of a

priori and a posteriori methods, the optimisation and decision making process iteratively

evolve in interactive methods.

Although which approach is better than the other is clearly debatable and subjective, a

priori methods are widely used thanks to their simplicity and intuitiveness [28]. In MOO

problems with dynamically evolving systems and/or time-critical systems, the possibility

for the user or operator to intervene in each optimisation procedure is minimal. Therefore,

in this type of the MOO problem, advantages of the a priori approach can be accentuated.

A critical issue with a priori methods including the weighted sum method is determination

of the user-defined preference information: how to aggregate the multiple objectives into

a single objective function [34].

The main motivation of this chapter is the challenge in determining the weightings

of objectives in a priori methods considering dynamically evolving systems and systems
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require time-critical decision making. Non-existence of an absolutely dominant solution

among conflicting objectives makes the decision on appropriate weightings cumbersome.

Although moving away from a solution along a feasible search direction improves most

of objectives in the MOO problem, but it is likely to impair a few objectives or even

just one objective. This implies that the performance may still be degraded, especially if

the impaired objective is critical. Therefore, it could be important to examine the trade-

offs among the candidate solutions of the MOO problem and its result could be used in

finding weightings of the objectives. Note that the trade-offs are defined as limit effects

of deviation along a feasible direction from a given decision and it is measured by relative

changes in objectives.

There have been several attempts to resolve the difficulties in finding the appropriate

weightings for given MOO problems. The weighted compromise programming [35] uses

the ratio of positive axis intercepts. Later, Messec [36] suggested the conversion method

from design metrics to form the aggregated objective function. Both methods, however,

do not implement the trade-off information of the problem structure.

This chapter develops an a priori MOO algorithm that determines the weightings

in consideration of the trade-offs among the potential solutions. The main proposition

is to leverage the evolutionary game theory (EGT), so the proposed method is named

evolutionary game based a priori MOO.

The rational behind this proposition is that selecting the weightings in a priori meth-

ods can be considered as an evolutionary game problem in which optimising each objec-

tive corresponds to a strategy. In this game, we can evaluate the change in the costs results

from a small deviation of an optimal individual, that is the solution obtained from opti-

mising the corresponding single objective. The concept of this change is identical to that

of the trade-off. If the trade-off of an optimal individual is small compared with others,

optimising the corresponding objective becomes more important in the game. Solving

the evolutionary game will result in the weighting of the optimal individual inverse pro-

portional to the trade-off. EGT consequently enables determination of the weightings
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reflecting the the trade-offs.

Obtaining the weightings using the EGT was first attempted in [21]. The MOO prob-

lem considered in [21] was a Weapon Target Assignment (WTA) problem where several

objectives need to be optimised and time-critical decision making is of great importance.

The proposed algorithm was expected to enable consideration of the individual solutions’

survivability in other criteria without any expert decision or use of aggregation coeffi-

cients. As the main purpose was to briefly study its feasibility and demonstrate its po-

tential in the WTA problem, the rigorous development, analysis, and validation of the

algorithm remained the subject of another study.

Under this background, this chapter first develops an improved evolutionary game

based a priori MOO algorithm, named EGMOO. The main considerations of this de-

velopment are to propose how to convert the MOO problem to a evolutionary game of

selecting the weightings, and to provide the closed-form solution of the converted game.

In order to mitigate the issue results from the different scales of the objectives, this chap-

ter utilises normalised objectives in the evolutionary game dynamics. Selecting a proper

normalisation method for the evolutionary game, this chapter investigates a few normali-

sation methods [37, 38].

This chapter then focuses on the analysis and validation of the proposed a priori MOO

algorithm. In the analysis, we examine the properties of the proposed algorithm, including

incommensurability, stability and singularity, through the dynamics of the evolutionary

game. Then, the proposed evolutionary game based approach is validated by performing

the trade-off analysis, which is common in MOO algorithms [39, 40, 41, 42, 43, 44, 45,

46, 47]. In order to demonstrate the validity of the evolutionary game based approach, this

chapter also performs numerical simulations with benchmark problems commonly used

for the validation of the MOO algorithms. In the discussion of the simulation results,

the trade-off of the solution point of the proposed approach is compared with the optimal

trade-off obtained from the whole Pareto-optimal set.

The rest of the chapter is organised as follows: Section 3.2 introduces the definition
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of the multi-objective problem and two classical a priori MOO methods. Section 3.3

describes the decision process for determining the weightings based on the EGT approach.

The performance of the proposed evolutionary game based MOO algorithm is evaluated

with the trade-off analysis explained in 3.4. The problem settings and numerical results

are presented in Section 3.5. Finally, the conclusion and future works are proposed in

Section 3.6.

3.2 Multi-Objective Optimisation

An MOO problem is generally defined with multiple cost functions, constraints, and

bounds as

minimise fm(xxx), m = 1,2, · · · ,M

subject to g j(xxx)≥ 0, j = 1,2, · · · ,J

hk(xxx) = 0, k = 1,2, · · · ,K

xlb
i ≤ xi ≤ xub

i , i = 1,2, · · · ,n

(3.1)

where the number of cost functions, M, is larger than 2, and xxx is a vector of n decision

variables. Equality and inequality constraints can either exist or not.

As stated in Introduction, this research develops an a prior method where the MOO

problem is reformulated to a single-objective optimisation problem using the EGT ap-

proach. The two classical a priori methods are the weighted sum method and the min-max

goal programming approach.

Let us first briefly review the weighted sum method. For more detail, the reader is

referred to [34]. The weighted sum method integrates multiple objectives, which are pre-

multiplied by the weighting vector www, into a single cost function. The MOO problem is
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therefore reformulated as

minimise f (xxx) =
M

∑
m=1

wm fm(xxx)

subject to g j(xxx)≥ 0, j = 1,2, · · · ,J

hk(xxx) = 0, k = 1,2, · · · ,K

xlb
i ≤ xi ≤ xub

i , i = 1,2, · · · ,n

(3.2)

where wm’s are the weightings for the corresponding cost functions fm’s.

The weighted sum method is one of the most widely used MOO methods thanks to its

simplicity and intuitiveness in finding the non-dominated solutions. It is also proven that

any Pareto-optimal solution can be reached by the weighted sum method when the MOO

problem is convex.

However, one critical drawback of this method is that the performance is highly sen-

sitive to the selection of the weightings. Obtaining the proper weightings involves a few

difficulties including ambiguousness of reflecting the decision maker’s preference infor-

mation, problem dependency, and incommensurability in the multiple objectives.

Another limitation of the weighted sum method occurs when dealing with non-convex

optimisation problems. The solutions of the weighted sum methods are proven to be

Pareto-optimal, but likely to be distributed either in the boundary or in the nonuniform

parts of the non-convex Pareto-optimal set. Subsequently, even if the weightings are

determined adequately overcoming the difficulties listed above, the resultant optimal so-

lution may converge to the identical or indifferent points of the other weightings.

Now, let us recall goal programming and its properties in brief. Again, the reader is

referred to [34] for more detail. Goal programming uses additional pre-defined prefer-

ence information beside the relative importance of the multiple objectives: the goal of

the optimisation. Minimising the deviations from the solutions to the designated target

objectives, the min-max goal programming approach converts an MOO problem into the
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following single-objective optimisation problem:

minimise γ

subject to fm(xxx)− γwm ≤ fgoal,m, m = 1, · · · ,M

g j(xxx)≥ 0, j = 1,2, · · · ,J

hk(xxx) = 0, k = 1,2, · · · ,K

xlb
i ≤ xi ≤ xub

i , i = 1,2, · · · ,n

(3.3)

where γ is the deviation from the goal, fgoal .

Unlike the weighted sum method, it is proven that the min-max goal programming

approach is able to find all the Pareto-optimal solutions in both the convex and non-

convex MOO problems. Note that capability in finding the entire Pareto-optimal solutions

is important to properly determine the weightings in a priori approaches. This is because,

although a priori methods compute a single optimum, accessibility to the Pareto-optimal

set should be secured to reflect the effects of different weighting sets in the solutions.

Similar to the weighted sum method, it is critical to determine appropriate weight-

ings in the min-max goal programming approach since its performance is dependent on

the these weightings. Moreover, utilising the concept of goal might introduce additional

complexity to the problem.

The proposed MOO method in this chapter can utilise both the weighted-sum method

and min-max goal programming approach, since the proposed approach focuses in de-

termining the proper weightings. In cases that the estimation of goal is difficult, the

weighted-sum method is more appropriate while min-max goal programming approach

should be used for non-convex MOO problems. For this reason, in Chapter 2, the weighted-

sum method has been used considering that determining the goal of network properties.

In this chapter, however, most of the benchmark problems incorporate non-convex Pareto-

optimal front, and thus the goal programming approach has been utilised.



34 CHAPTER 3. A PRIORI MOO USING THE EGT

3.3 Evolutionary Game Based Approach

The overview of the proposed evolutionary based a priori MOO algorithm is depicted in

Fig. 3.1. As shown in Fig. 3.1, given the MOO problem, the proposed MOO algorithm

first individually solve each single objective optimisation (SOO) problem. The optimal

solutions obtained from SOO problems are named optimal individuals and denoted as xxx∗m

for m ∈ {1, . . . ,M}. The optimal individual can be a solution vector or an average of mul-

tiple solution vectors of the corresponding SOO problem. Then, the algorithm formulate a

payoff matrix, A, from the optimal individuals obtained and corresponding cost functions,

fm. Once, the payoff matrix is given, the proposed MOO algorithm solve the evolution-

ary game to find a Evolutionary Stable Strategy (ESS). The weightings of each objective

can be then obtained from this ESS. Next, the algorithm solve the MOO problem with the

weightings obtained from the ESS. Note that, if the min-max goal programming approach

is selected as an a priori MOO method like in this chapter, the goals, fgoal,m, should be

provided to formulate the MOO problem as shown in Eqn. (3.3). These goals can be ob-

tained from individual SOO performed for each objective or simply set to be identical to

optimal individuals.

Now, let us discuss how to formulate the evolutionary game of determining the weight-

ings in detail. MOO is a type of non-cooperative game where the decision variables act

as players and multiple criteria correspond to strategies. The players adopt mixed strate-

gies generating the fitness or a probability distribution over possible actions, which is

related to the weightings of each objective in the MOO problem. The concept of Nash

equilibrium, the point on which each player maximises his or her payoff assuming the

others’ payoff being fixed, can be interpreted in terms of optimisation, i.e. maximising

the worst-case value. In order to mitigate the stiffness of the weighted-sum of the cost

functions on the Nash equilibrium point, less fitness is assigned on more stiffly chang-

ing strategy. However, the purpose of the decision making of the weightings is exactly

opposite; more weightings should be assigned to the cost function with larger slope in

MOO problems. Therefore, the decision making problem of selecting the weightings is
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MOO problem

Solve SOO
problems for

each objective

Form the pay-
off matrix

Solve the evo-
lutionary game

Determine the
weightings

Solve the
MOO problem

Optimal solution

xxx∗m, fm, f+m , f−m ∀m

A

ESS

www

fgoal, m ∀m

Figure 3.1: Flowchart of the proposed evolutionary game based a priori MOO: f+m and
f−m denote the maximum and minimum vlaues of the corresponding cost function fm.

subsequently converted to the problem of finding the negative value of the fitness in Nash

equilibrium.

Fig. 3.2 visualises the inverse relationship between the Nash equilibrium and the de-

sired weightings of the objectives in a simple MOO problem with M = 2. Two cost

functions are plotted in straight lines as the payoff linearises the trade-offs between the

objectives. The mixed strategy plotted flat in a red line, maximising the minimum value,

is therefore a Nash equilibrium solution. The fitness is inversely proportional to the trade-

offs caused by the change of decision variables. Hence, the weightings can be designed

as the difference between the fitness and 1’s. Utilisation of the game theory generalises



36 CHAPTER 3. A PRIORI MOO USING THE EGT

this concept, i.e. enables to expand the decision making of the weightings to the general

number of objectives.

Figure 3.2: The equilibrium in the two-objective optimisation problem

The effect of the changes in weightings on the solution space is shown in Fig. 3.3.

Let us suppose that the original weightings of the objectives, f1 and f2, are set to be

(ω1,ω2) = (0.5,0.5). If we apply the evolutionary game, the weighting of f2 becomes

larger than that of f1 as the f2 value more rapidly changes as illustrated in Fig. 3.2, e.g.

compared with the case of (ω1,ω2) = (0.3,0.7). In Fig. 3.3, the optimal solutions for the

two sets of the weightings are marked as a circle and star shape on the solution space.

From Fig. 3.3, we can deduce that adjusting the weightings drives the slope at the optimal

solution close to ”-1” in the weighted solution space. This implies that the trade-offs of

each weighted objective in the proposed approach tend to be identical.

There are two major views on finding the equilibrium, static and dynamic approaches.

Even though the final result may be the same, the dynamic approach complements the

game dynamics that is not observed in the static approach. The converging pattern of the

fitness is characterised by the game dynamics, which is defined as a feedback loop of each

player’s payoff change results from the others’ action. When an MOO problem is time-

variant, change in the weightings can be either relaxed or tightened according to the time

span in a feedback loop. As shown in Fig. 3.4, the gradient of evolution is straightforward
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Figure 3.3: Effect of the changes in weightings on the solution space

to the equilibrium, so that the cease in the middle results in the intermediate value between

the initial and the stable value. Therefore, this research applies EGT, the most renowned

concept of the dynamic approach, in the decision making of the weightings.

Figure 3.4: The relaxation of evolution in time-variant system

Following subsections will explain how to compose and normalise the payoff of each

player from the MOO problem. Moreover, for the implementation of the resultant pay-

off matrix into the game dynamics, salient issues such as non-existence, singularity, and

stability will be discussed.
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3.3.1 Payoff Matrix

The payoff matrix defined in this research is the same as the payoff matrix commonly used

in other MOO methods [25]. As the weightings of an MOO problem are correspondent

to the fitness of cost functions in game theory, objective functions comprise the rows and

different decision variables are substituted to each column. Therefore, the payoff matrix

can be defined with multiple decision variables and criteria as

A =



xxx∗1 xxx∗2 . . . xxx∗M

f1 f1(xxx∗1) f1(xxx∗2) . . . f1(xxx∗M)

f2 f2(xxx∗1) f2(xxx∗2) . . . f2(xxx∗M)

...
...

...
...

fM fM(xxx∗1) fM(xxx∗2) . . . fM(xxx∗M)


(3.4)

where xxx∗i ∈ S denotes an optimal individual for each cost function fi, and S is a solution

space.

Due to the incommensurability issue, the payoff defined in Eqn. (3.4) cannot be di-

rectly used. Normalisation of this payoff matrix must be preceded to resolve the incom-

mensurability. Nonlinear normalisation methods, such as the one implemented in another

decision making algorithm, TOPSIS (technique for order preference by similarity to an

ideal solution) [37], are not under consideration in this research due to their dependency

on units. Two commonly used linear normalisation methods are given as

Ai j =
fi j

f+i
(3.5)

Ai j =
fi j− f−i
f+i − f−i

(3.6)

where fi j = fi(xxx∗j), f−i is the minimum and f+i is the maximum value of each cost func-

tion. Given the first normalisation method described in Eqn. (3.5), the normalised value

Ai j becomes less sensitive to the change in the value of the cost function fi j as the maxi-
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mum value f+i gets larger. Let us suppose the changes in two objectives are the same, but

the maximum value of the one objective is much smaller than the other. Then, although

the changes in the cost functions are the same, the normalised cost with the smaller maxi-

mum value is more stiffly changing compared to the other. From the proposed evolution-

ary game, it is clear that the more weighting will be selected for the one with the smaller

maximum value, which is undesirable. On the other hand, in the normalisation method

defined in Eqn. (3.6), the normalised cost is determined only by the unit change in the cost

functions. Using this normalisation method, the weightings will be selected by evaluating

the relative change in the range between the minimum and maximum values of the cost

function, not the absolute scale of the cost function. This coincides with the main idea

of the proposed evolutionary game based approach. Therefore, the second normalisation

method is utilised in the proposed MOO algorithm, i.e.:

A = {Ai j}

Ai j =
fi j− f−i
f+i − f−i

(3.7)

3.3.2 Evolving Dynamics and Stability

Using the payoff matrix, the fitness on the stable equilibrium evolves in each time step

through the game dynamics. Assuming no mutation or recombination process, the resul-

tant fitness is determined only by its initial value. Evolving dynamics of the fitness is

defined by the replicator equation as follows [48].

ṗi = pi(eiApT − pApT ) (3.8)

where A∈RM×M is the payoff matrix, and p∈R1×M is the fitness for each strategy. Here,

ei ∈ R1×M is a vector with one at the ith element and zeros at the others and pi denotes

the proportion of the ith strategy in the population.

The converging point of fitness after infinite iterations can be estimated analytically.
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Without the uncertainties of mutation or recombination, result of the replicator equation

is fixed with respect to the initial guess of the fitness. Also, it is proven that there exists

at least one Nash equilibrium in any evolutionary game [26]. In order to find Nash equi-

librium, two relevant concepts are explored: a rest point and stability. Nash equilibrium

is defined as a rest point which is stable whereas strict Nash equilibrium requires the rest

point to be asymptotically stable.

First, analytical expression of a rest point, p̄, is derived from that the derivative of the

game dynamics becomes zero at the point.

eiAp̄T − p̄Ap̄T = 0 (3.9)

Rearranging the equation yields the following relationship.

Ap̄T = p̄Ap̄T111n×1 = k111n×1 (3.10)

Using the fact that summation of the weightings is always 1, the solution is computed

with an augmented matrix as follows.

p̄T

k

=

 A −111n×1

1111×n 0


−1000n×1

1

 (3.11)

When the augmented matrix is invertible, a single rest point exists for the replicator

equation. On the contrary, if the problem is singular, infinitely many equilibria exist.

The duplicated rows and columns are reduced to make the matrix full rank. Also, all the

components in p̄ must be non-negative to stay inside the solution set. Even though the

analytical solution of p̄ has a negative value, the population does not evolve further to the

solution.

Second, a point is stable when the following relationship is accomplished.

pT Ap < p̄T Ap f or ∀p such that pT Ap̄ = p̄T Ap̄ (3.12)



3.4. TRADE-OFF ANALYSIS 41

The stability of the dynamics is determined by the eigenvalues of the payoff matrix A;

real value of more than two eigenvalues must be negative to make the system stable [49].

In the payoff matrix of MOO problems, the diagonal terms are zero after the normalisation

and thus stability is always guaranteed.

3.4 Trade-Off Analysis

For the validation of MOO methods, it is required to select proper performance indices.

Performance of MOO methods is usually evaluated either on the searching methods for

the Pareto-optimal set or on the decision-making algorithms. Metrics such as error ra-

tio, set coverage metric, generational distance, and maximum Pareto-optimal front error

are relevant to the performance of optimisation methods converging towards the Pareto-

optimal front [50]. Distribution along the Pareto-optimal front is assessed by spacing,

spread, or chi-square-like deviation measure [50]. Metrics of decision-making algorithms

include closeness, uniformity, and consistency, all of which are computed by multiple de-

cision makers and the decision table [51]. As the proposed approach is not not required

to find any Pareto-optimal set or decision table, none of these metrics are applicable.

The main purpose of the evolutionary game based approach is to compute the weight-

ings reflecting the trade-off information. The trade-off refers to the relative changes in one

cost function with respect to the those in other costs. For the validation, the trade-off in-

formation in the proposed approach should be investigated and compared to reference ap-

proaches. Note that the concept of trade-off, also known as marginal rate of substitution,

is often adopted in interactive methods. Therefore, this research defines a performance

index using the trade-off utilised in interactive methods.

Let us discuss about the trade-off in more detail. The trade-off information applied in

interactive methods are categorised into two, partial and global trade-off. The partial or

local trade-off is an approximation of the slope tangent to the Pareto-optimal. Definition
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of the partial trade-off of f1 with respect to f2 and its approximation are given as

Ti j(x̄xx) =
fi(x̄xx)− fi(xxx)
f j(x̄xx)− f j(xxx)

' ∇ f T
i (x̄xx)ddd

∇ f T
j (x̄xx)ddd

(3.13)

where ddd is a vector of change in decision variables such that xxx = x̄xx+αddd ∈ S for a constant

α ≥ 0.

An interactive or a posteriori optimisation method using the partial trade-off is sug-

gested by Miettinen [44]. The Miettinen’s method computes the objective trade-off infor-

mation from the structure of the problem with the Karush–Kuhn–Tucker multipliers, and

selects a new Pareto-optimal solution with the desirable trade-off specified by the decision

maker.

The advantage of using the partial trade-off as a performance index would minimal

computational load. The partial trade-off is available as a byproduct of finding the Pareto-

optimal set using the Karush–Kuhn–Tucker multipliers. A potential issue is that the de-

sirable partial trade-off must be specified by the decision maker with precision, which is

often difficult.

The global trade-off is defined as a limit effect of changing from a given decision

along the Pareto-optimal set. Like the partial trade-off, the global trade-off is measured

by relative changes in costs. The definition of the global trade-off and its relevant set are

given by [47]:

Ti j(x̄xx) =


sup

xxx∈S<j (x̄xx)

fi(xxx)− fi(x̄xx)
f j(x̄xx)− f j(xxx)

, for S<j (x̄xx) 6= φ

−∞, for S<j (xxx) = φ

S<j (x̄xx) = {xxx ∈ S| f j(xxx)< f j(x̄xx), fk(xxx)≥ fk(x̄xx), ∀k 6= j}

(3.14)

where S denotes the Pareto-optimal set.

If the solution set is properly efficient, the global trade-off is bounded with system
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control parameters. The boundedness is obtained as


Ti j(x̄xx)≤

λ j+ρ j
ρi

Tji(x̄xx)≤ λi+ρi
ρ j

(3.15)

where the control parameters ρi and λi mean relative and absolute importance, respec-

tively. If we select the bound of the trade-off as β , then the following two equations must

hold 
λ j+ρ j

ρi
= βi j

λi+ρi
ρ j

= β ji

(3.16)

In iterative method, λi and λ j are determined by the user interactively. Once λi and λ j

are given, we can obtain ρi and ρ j from Eqn. (3.16). Unlike in the partial trade-off,

the desirable trade-off doesn’t need to be specified with precision, but only its desirable

bound, βi j, is required to be defined. Therefore, this research uses the global trade-off to

define a performance index for the validation of the proposed approach.

Note that, as shown in the payoff matrix given in Eqn. (3.4), the absolute importance

of each objective is identical. Therefore, for the investigation of the properties of the

proposed MOO algorithm, it needs to set to be unity. Furthermore, the bound, βi j, is the

parameter that the user defines interactively by examining the quality of the solution from

the current trial decision of βi j. However, as the proposed evolutionary based approach

aims to make the all values of the trade-offs identical to their average, all βi j’s should be

set to be the average of the corresponding trade-offs.

In order to selects a new Pareto-optimal solution meeting the desirable trade-off con-

ditions, iterative approaches generally defines a new optimisation problem: find the solu-

tion, xxx∗, which minimises the following cost function

J(xxx) = max
i, j
{(λi +ρi)( fi(xxx)− fi(xxx∗i ))

+ρ j
(

f j(xxx)− f j(xxx∗j)
)
}

(3.17)
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while satisfying the boundedness condition of the global trade-offs. The cost in this prob-

lem implies the maximum difference between all actual trade-offs and the corresponding

bound at the point xxx. Hence, this problem is to minimise this maximum difference that

enables to find a point xxx on the Pareto optimal front where the difference between the

actual trade-offs and the bound is minimised. One of the representative examples of us-

ing this cost function is Interactive Decision-Making Algorithm (GIDMA) suggested by

Kaliszewski [47].

If the proposed evolutionary based approach indeed makes the all values of the trade-

offs identical, its solution should be the same as the optimal solution of the optimisation

problem whose cost function is given by Eqn. (3.17). Therefore, the performance index

in this research can be further defined as

PI(xxxEG) =

∣∣∣∣J(xxxEG)− J∗

J−− J∗

∣∣∣∣ (3.18)

where J∗ and J− denote the cost of the optimal solution obtained by GIDMA and the

worst cost, for λi = λ j = 1 and βi j = µ
(
Ti j(x̄xx)

)
. Here, µ

(
Ti j(x̄xx)

)
denotes the average of

the trade-offs Ti j over x̄xx. This performance index will be utilised for the validation of the

proposed evolutionary game based algorithm.

3.5 Validation

In order to validate the performance of the proposed algorithm, this section performs

numerical simulations on two types of well-known benchmark problems: static and dy-

namic. The validation will be conducted by evaluating the performance index defined in

Eqn. (3.18) and computation time.

There are various popular test suites for MOO, such as SCH, FON, KUR, POL, and

VNT [52]. Most of these benchmark problems focus on the search for Pareto-optimal

front and the form of Pareto-optimal front in these test suites may contain distinctive

features that are not common in real world problems.
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However, the purpose of applying the benchmark problems is to compute the trade-

off information, and thus complicated forms or duplicated Pareto-optimal fronts may not

be necessary. To this end, three problems of the Zitzler–Deb–Thiele (ZDT) problem set

[50] – ZDT1, ZDT2, and ZDT3 – and Miettinen’s problem are used in the trade-off anal-

ysis are selected as static optimisation test cases. The other problems of the ZDT set

– ZDT4, ZDT5, and ZDT6 – are excluded in this research, as these problems are de-

signed to test the performance of the algorithm on finding multiple, thin, and nonuniform

Pareto-optimal fronts, respectively. For dynamics optimisation test suites, Deb–Thiele–

Laumanns–Zitzler’s problem set (DTLZ) [52, 53] is chosen.

3.5.1 Benchmark Problems

This subsection introduces formulation of the benchmark problems and analyses the char-

acteristics of the corresponding Pareto-optimal front through visualisation.

ZDT test problems with two objective functions can be formulated with the following

structure. 
f1(xxx) = f1(x1,x2, · · · ,xk)

f2(xxx) = g(xk+1, · · · ,xn)×h( f1,g)
, k < n (3.19)

where the function f1 tests the diversity along the Pareto-optimal front, g tests the con-

vergence to the front, and h determines the shape of the Pareto-optimal front, such as

convexity, non-convexity and discontinuity.

The problem ZDT1 has a convex Pareto-optimal set, which is basic and relatively easy

to find the Pareto-optimal front. Increasing the number of decision variables, n, the test

function enables to evaluate the algorithm’s capability to handle large number of decision
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variables. The relevant functions are defined as follows.

ZDT1 :


f1(xxx) = x1

g(xxx) = 1+ 9
n−1 ∑

n
i=2 xi

h(xxx) = 1−
√

f1/g

(3.20)

Second, ZDT2 has a non-convex Pareto-optimal set so that the simple weighted-sum

methods are unable to find the intermediate values of Pareto-optimal solutions. The func-

tions f1, g, and h are defined as

ZDT2 :


f1(xxx) = x1

g(xxx) = 1+ 9
n−1 ∑

n
i=2 xi

h(xxx) = 1− ( f1/g)2

(3.21)

Third, the Pareto-optimal set of ZDT3 is discontinuous due to its sine-function in h.

As the definition of Pareto-optimal set is that all the solutions contained in the set are

not strictly dominant to each other, nondominated parts of sine-function are not defined

as Pareto-optimal resulting in a discontinuous Pareto-optimal front. The functions are

defined as

ZDT3 :


f1(xxx) = x1

g(xxx) = 1+ 9
n−1 ∑

n
i=2 xi

h(xxx) = 1−
√

f1/g− ( f1/g)sin(10π f1)

(3.22)

The decision variables at the Pareto-optimal front are derived when all the values of

x2,x3, · · · ,xn are 0. The solution varies along the Pareto-optimal depending on the value

of x1 varying inside its upper and lower bounds.

The Pareto-optimal fronts of ZDT1, ZDT2, and ZDT3 with analytic solutions are

shown in Fig. 3.5. The shapes of convex, non-convex, and discontinuous Pareto-optimal

fronts are fixed regardless of the number of decision variables. All the decision variables
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Figure 3.5: The Pareto-optimal fronts of the ZDT problems

are bounded from 0 to 1, and thus the function f1 varies from 0 to 1. From the dotted line

of sinusoidal function in ZDT3, only line-dotted parts are defined as Pareto-optimal.

Miettinen’s problem is designed to test the trade-off analysis in case of a irregular

shape of the Pareto-optimal front in three-dimensional space. The problem incorporates

three conflicting objective functions and two decision variables as follows.

Miettinen’s problem :

f1(x1,x2) = φ(x1,x2)

f2(x1,x2) = φ(x1,x2−1)

f3(x1,x2) = φ(x1−1,x2)

ψ(x1,x2) = x2
1 + x2

2

φ(x1,x2) = ψ(x1,x2)− exp(−50ψ(x1,x2))

(3.23)

The analytic solution of Miettinen’s problem is given when the decision variables x1

and x2 satisfy the following inequalities.

x1 ≥ 0, x2 ≥ 0, x1 + x2 ≤ 1 (3.24)
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Figure 3.6: The Pareto-optimal front of the Miettinen’s problem

The shape of the Pareto-optimal front of the Miettinen’s problem is visualised in

Fig. 3.6.

The DTLZ test problems can expand the optimisation problem to the general number

of objective functions and to the time-variant problem. The formulation is given as

DTLZ :

f1(xxx) = (1+g(xxxM)+K(t))cos(x1π

2 ) · · ·cos(xM−1π

2 )

f2(xxx) = (1+g(xxxM))cos(x1π

2 ) · · ·sin(xM−1π

2 )

...

fM(xxx) = (1+g(xxxM))sin(x1π

2 )

g(xxxM) = G(t)+∑x∈xxxM(xi−G(t))2

(3.25)

where xxxM = {xM, · · · ,xn}, n ≥ M, and the functions G(t) and K(t) determine the time-

variant properties.

The analytic solutions of the Pareto-optimal front are derived when xxxM is zero and

x1,x2, · · · ,xM varies from 0 to 1.

The resultant Pareto-optimal front is a circle in two-dimension and a sphere in three
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dimensional space, and therefore it is non-convex Pareto-optimal set problem. The radius

and eccentricity depends on the time-variant functions G(t) and K(t). The Pareto-optimal

front of the three-objective problem is plotted as ellipsoids in Fig. 3.7.

Figure 3.7: The Pareto-optimal fronts of the DTLZ problems

3.5.2 Simulation Settings

The optimisation algorithm selected to solve SOO problems is the sequential quadratic

programming (SQP) method. As the cost functions are nonlinear and twice continuously

differentiable, the SQP algorithm is an efficient solver.

The trade-off analysis is then conducted to evaluate the performance of the proposed

approach. The a posteriori MOO to find the Pareto-optimal front, of which the trade-off is

computed, is handled with the repetitive min-max goal programming approach. In other

words, the Pareto-optimal front is found from repeating SOO with different weightings.

For a fair comparison, like in the proposed evolutionary game based approach, SQP is

used as the solver for each SOO problem.

The evolutionary game based approach requires (M + 1) times of single-objective

optimisations. On the other hand, the number of single-objective optimisation processes

required for obtaining the full Pareto-optimal front is the same as the number of Pareto-

optimal solutions, denoted as N. If the front is continuous, this number might become

infinite. For the fair comparison on the computation time with GIDMA, this number needs
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Table 3.1: Benchmark problem simulation parameter specification

Test Problem The Number of The Number of Decision
Objectives (M) Variables (n)

ZDT1 2 30
ZDT2 2 30
ZDT3 2 30

Miettinen’s 3 2
DTLZ2 M3 3 10
DTLZ2 M4 4 10
DTLZ2 M5 5 10

to be limited to a reasonable value. In this research, the parameter N is fixed as 100 in

two-objective optimisation problems, and approximately 1800 in the others, reflecting the

complexity in the shape of the Pareto-optimal front. The computational time is measured

directly by the MATLAB built-in function computing the elapsed time. Note that the

two algorithms are tested in Matlab 2016a and the specification of the machine run the

algorithms is OS X 2.8 GHz Mac mini with 16 GB RAM. The absolute elapsed time

varies depending on the specification of the machine, but the relative time consumed for

each algorithm could be useful for the computation time comparison.

The number of objectives and variables of each benchmark problem are specified and

summarised in Table 3.1. It is worth to note that the Pareto-optimal front is determined

only by k number of decision variables, where k = M−1, in all the benchmark problems.

If exists, the number of elements of the set xxxM determines the computational complexity

in finding the Pareto-optimal front.

3.5.3 Simulation Results

Time-invariant weighting determination

For time-invariant systems, the ZDT test suites, the Miettinen’s problem, and DTLZ tests

with G(t) = 0 and K(t) = 0.5 are considered.

The performance comparison results are summarised in Table 3.2. In the table, PI

denotes the performance index given in Eqn. (3.18). The Pareto-optimal front and the
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Table 3.2: Performance of time-invariant optimisation

Test Problem PI
The Computation Time (sec)

GIDMA EGT

ZDT1 0.0346 5.93 0.747
ZDT2 0.0041 6.228 0.769
ZDT3 7.8386e-4 12.823 0.821

Miettinen’s 0.2553 43.198 0.679
DTLZ2 M3 0.0128 45.287 1.22
DTLZ2 M4 0.0835 95.371 1.23

correspondent trade-off along the f1 axis in ZDT problems suites is given in Fig. 3.8. The

scale of the objective function f2 is plotted on the left y-axis and that of normalised trade-

off on the right y-axis. The two-objective optimisation problems yields a payoff matrix

with 0’s at the diagonal terms and 1’s at the off-diagonal terms, which implies that the

resultant weightings are just even. Although the evolutionary game based approach and

its weightings are simple, the result of EGMOO is almost the same with the solution found

by GIDMA in ZDT2 and ZDT3. As stated in Section 3.4, the solution found by GIDMA

is considered as the optimal solution in the trade-off analysis. Note that Regarding the

result for ZDT1, it seems the difference in the solutions is graphically large. However, as

shown in the Table 3.2, the PI remains small, that is around 3.5%.

The Miettinen’s problem shows more irregular pattern in both Pareto-optimal front

and the trade-off along f1 and f2 axis as shown in Fig. 3.9 (a). As the Pareto-optimal

front is asymmetric, the solution of EGT is located approximately in the centre of the

Pareto-optimal front, whereas the GIDMA solution is placed at the lower edges of the

Pareto-optimal front. As represented in Table 3.2, the error represented by PI is still

around 25.53%.

In DTLZ problems, the evolutionary stable solution tends to provide the optimal solu-

tion confirming the trade-off analysis results. Note that although the trade-off error repre-

sented by PI remains small, it becomes larger as the dimension of the problem increases in

the DTLZ benchmark problem. For visualisation, the results of the three-objective prob-

lem in the DTLZ set, DTLZ2 M3, are depicted in Fig. 3.9 (b). Even though the problem
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(a) ZDT1 (b) ZDT2

(c) ZDT3

Figure 3.8: The evolutionary stable solution and its trade-off in the ZDT problems

(a) Miettinen’s (b) DTLZ2 M3

Figure 3.9: The evolutionary stable solution and its trade-off in the Miettinen’s and
DTLZ2 M3 problem
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has a ellipsoidal Pareto-optimal front, which is not exactly symmetric, EGMOO results in

a solution close to the GIDMA solution.

The simulation results for the trade-offs in general confirm that the trade-off analysis

of the proposed approach is valid regardless of convexity or non-convexity of the Pareto-

optimal front: the proposed approach determines the weightings that can provide an MOO

solution whose trade-offs become identical.

Now, let us investigate the performance of the proposed evolutionary game based ap-

proach on the computational time, compared with that of GIDMA. The results on the

computational time are again summarised in Table 3.2. The computational time expo-

nentially increases as the complexity in the size and shape of the Pareto-optimal front

increases in GIDMA. On the contrary, EGMOO provides relatively consistent computa-

tional time while providing the similar results to GIDMA. This implies that, for the MOO

problems which require time-critical decision making, EGMOO is much more appropri-

ate to be implemented.

Time-variant weighting determination
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Figure 3.10: The weightings and evolutionary stable solution at time-variant systems

The time-variant systems are considered to observe the weightings dynamically deter-

mined by the evolutionary game based approach. The DTLZ problem is linearly varied

with the function from K(t) = 0 to K(t) = 1.

In Fig. 3.10, the weightings of each cost function and the resultant cost of the optimi-

sation is plotted. The weightings of the function f1 increase as the radius along the f1 axis
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increases from 1 to 2, while the other weightings are the same as the formulation is sym-

metric. When the problem is extended to M = 4 and M = 5, the ratio of the weightings

is maintained but the scale is normalised to match the summation with 1. Subsequently,

the cost of f1 increases more rapidly than that of the other objectives even considering

that the overall scale of f1 is expanding in double. The average cost over the time span

is 0.0320 and the whole computation time is 1.792 sec, which is fairly short considering

that the trade-off analysis take 5.223 sec.

3.6 Conclusions

This chapter develops an a priori approach for MOO problems involving dynamically

evolving systems and/or time-critical systems. A main challenge with a priori methods

is how to determine the user-defined preference information, i.e. how to aggregate the

multiple objectives into a single objective function [34]. Therefore, determination of the

weightings of objectives is of paramount in a priori methods. This chapter formulates

this determination problem as an evolutionary game of optimal individuals and obtains

the weightings by solving this game. Note that each optimal individual is defined as the

optimal solution of the single objective optimisation problem with each objective. In the

game, to mitigate the stiffness of the weighted-sum of the cost functions on the Nash

equilibrium point, less fitness is assigned on more stiffly changing strategy. Since the

purpose of decision making on the weightings is exactly opposite, the proposed approach

assigns more weighting to the objective function with less fitness. This research also in-

vestigates the properties of the proposed evolutionary game based approach by theoretical

analysis including trade-off analysis. Here, the trade-off, also known as marginal rate of

substitution, refers to the relative changes in one cost function with respect to the those

in other costs and is a common concept used in MOO approaches. The analysis results

suggest that the proposed evolutionary game based approach finds weightings such that

the trade-offs at a MOO solution becomes identical to their mean value. We also per-
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form numerical simulations with well-known benchmark problems in MOO to validate

the analysis results. The simulation results confirm that the proposed approach makes

the trade-offs of each weighted objective identical to the mean at its solution. Moreover,

they also show that the computational time of the evolutionary game based approach is in

general consistent regardless the complexity of the problem. This indicates that the pro-

posed approach can be indeed applied to MOO problems involving dynamically evolving

or time-critical systems.
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Chapter 4

Analysis on the Networked Multi-Agent

System with Communication

Constraints

Abstract

In this chapter, a new analysis method on the multi-agent system is proposed to evalu-

ate the robustness and performance of the networked control. The main idea is to model

the networked control system as a multi-output-multi-input transfer function and to apply

the robustness and performance metrics defined in linear control theory. The strength of

this problem formulation is the applicability for general agent dynamics, controllers, and

communication characteristics, extending its potential feasibility. This chapter defines the

stability of the networked system, its robustness metric against uncertainties, and the per-

formance metric for reference input tracking. The case studies with first-, second-, and

higher order dynamics show the theoretical effects of network topology and agent dynam-

ics on the robustness, and as a result, a trade-off between the robustness and performance

metrics is suggested. The numerical simulations verify the analysis results of the case

studies.
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4.1 Introduction

The operation of the networked multi-agent systems is getting increasing attention for its

versatile applications: unmanned aerial vehicles (UAVs), mobile sensor networks, auto-

mated highway systems, etc. [14] However, there have been not many works considering

the communication constraints on the control of agents, despite their influence on the

stability of the networked control system. The communication is limited in its capacity,

delayed, and often incorporates incorrect information, but analysing their effect on the

control system is challenging for its stochastic and finite-field dynamics.

Previous studies have coped with this issue by defining the difference between the

real and transmitted states as the unknown perturbation. Under the assumption that the

perturbed error is bounded, the necessary and sufficient conditions for the closed-loop

stability were obtained [54]. In order to specify the communication constraints, Lin et

al. [55] proposed that the stability is mainly influenced by the time delay and the major

source of the communication delay is the accessing delay, which is constant in some

protocols such as time division multiple access (TDMA) protocols [56]. Assuming the

constant delay, the stability analysis is more detailed. By augmenting the state-space

representation with the delayed states, either the location of the closed-loop poles [57]

or the Schur stability [58, 59, 55] of the system matrix was evaluated. Tan and Liu [60]

applied the Schur stability of the networked system to a consensus problem, and Schwager

et al. [61, 62] provided a detailed implementation on quad-rotor UAVs, with an analytic

solution of the stability conditions for a first- and second-order agent dynamics. For

the first-order consensus problem, the analysis has been extended to time-varying delays

using Lyapunov stability [63].

This chapter proposes a generalised analysis framework on the networked multi-agent

system that can consider the effects of general agent and communication dynamics on

the robustness and performance. A key idea of the approach is that if the communication

dynamics can be modelled as a transfer function, such as the time delay as exponential

function and the data rate as zero-order-holder, any analysis tool in linear control theory
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can be applied. In [64], a similar approach has been taken for a first-order agent dynamics

to analyse the effect of time delay, which has been assumed to be identical in every control

input. In this research, the applicability of the analysis framework is extended to general

agent and communication dynamics, and its analysis metrics include stability margin and

tracking performance evaluation.

The problem formulation is generalised to consider the effects of higher-order agent

dynamics including physical interconnections among the agents, and of the accessing

delay that is a potential cause of destabilising the network. The stability of the networked

multi-agent system is defined with Routh–Hurwitz and Nyquist criterion to evaluate the

margins of gain/phase variation and time delay that do not destabilise the system. Here,

the stability margin of the networked multi-agent system necessarily involves multi-input-

multi-output (MIMO) transfer function analysis, of which the earlier concept has been

proposed by Kim [65]. The stability margin is extended to consider simultaneous gain and

phase variation, and the effects of communication network topology and agent dynamics

on the margin are detailed in this research. The sensitivity function is also evaluated to

quantify the reference tracking performance. The analysis results on first- and second-

order agent dynamics are compared with the previous works in [61, 64], which are partly

consistent with this work. The analysis, in this chapter, is not limited to simple agent

dynamics but extended to higher-order systems, revealing the physical insights on which

network topology and system dynamics is beneficial for the robustness and performance.

The analysis results are validated through numerical simulations.

4.2 Problem Formulation

The block diagram of the networked system with three agents is shown in Fig. 4.1. The

whole network is mainly composed of two parts: the agent dynamics with its controller

and observer, and the communication dynamics. The agent dynamics, including the pos-

sible interconnections among the agents, is denoted as G(s) ∈ Rn×m. The outputs are
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Figure 4.1: Block diagram of the networked control system

obtained in each agent with its transfer function Ci(s) ∈ Rli×n. The difference between

the reference inputs ri(t) ∈Rli and the observed outputs yi(t) ∈Rli , denoted as e(t) ∈Rli ,

is transmitted from j-th to i-th agent through the communication dynamics hi j(s) ∈ R.

Each agent computes its control input ui(t) ∈ Rmi based on the received outputs with the

transfer function Ki(s)∈Rmi×l . Formulation of each transfer function and the closed-loop

dynamics is discussed in this section.

4.2.1 Agent Dynamics

Consider a state-space representation for the networked agent dynamics as:

ẋ(t) = Ax(t)+Bu(t), (4.1)

where the system matrices A ∈ Rn×n and B ∈ Rn×m are assumed to be constant and con-

trollable. Then, the transfer function of the MIMO system is given as:

G(s) = (sIn−A)−1B, (4.2)
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Algorithm 1: N -hop flooding algorithm (implemented by robot i)
Require: Robot i has a clock t synchronised with the rest of the robots in the
network.

initialise ŷii = yi(0) and τii = 0;
initialise ŷi j = 0 and τi j = ∞ for j 6= i;
initialise ŷmin

i j = 0 and τmin
i j = ∞ for j 6= i;

for t = 0 to ∞ do
if it is robot i’s turn to broadcast then

broadcast ŷi = [ŷT
i1 · · · ŷT

iN ]
T ;

broadcast τi = [τi1 · · ·τiN ]
T ;

end
else if broadcast received from robot k with ŷk and τk then

for j = 1 to N do
if τk j < N and τk j < τmin

i j then
update ŷmin

i j = ŷk j and τmin
i j = τk j;

end
end

end
update ŷii = yi(t) and τmin

i j = τmin
i j +1 for j 6= i;

update ŷi j = ŷmin
i j and τi j = τmin

i j for j 6= i;
end

where In ∈ Rn×n is the identity matrix. The control law for each vehicle i is assumed to

be linear as:

Ui(s) =−Ki(s)
[
hi1(s)Y T

1 (s), · · · ,hiN(s)Y T
N (s)

]T
, (4.3)

where the capital letters Ui(s) and Yi(s) denote the Laplace transforms of ui(t) and yi(t),

respectively. The observed states Yi(s) are obtained with the observers as:

Yi(s) =Ci(s)X(s), (4.4)

where X(s) is the Laplace transform of x(t).

4.2.2 Communication Dynamics

The network protocol using the flooding algorithm is considered for its physical appli-

cability. The main idea of the flooding algorithm is that each agent copies the outdated
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outputs. Each agent takes turn to broadcast its output, while the others receive it to avoid

the interference. The time slot is allocated equally by time T , similar to TDMA protocol.

After all the agents take their turns, the networked agents have the outdated outputs of

the connected agents with different time delays. The flooding algorithm thus enables the

multi-hop communication with constant delays proportional to the time slot T and the

number of minimum turns to transmit the data from j-th to i-th agent as τi j. The detailed

flooding algorithm is shown in Algorithm 1, which is a modified algorithm of [61] to

consider N -hop communication.

The delayed communication is modelled as:

hi j(s) = e−τi jT s. (4.5)

The exponential function complicates the characteristic equation, and the closed-loop

transfer function has a non-causality issue. To analyse the stability, the delay is approxi-

mated to a rational function with Pade approximation as:

hi j(s)'
1− τi jT s/2

1+ τi jT s/2
. (4.6)

4.2.3 Networked Dynamics

The open-loop transfer function of the whole networked system is derived from Fig. 4.1

as:

GOL(s) =C(s)G(s)(K(s)◦H(s)), (4.7)
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where ◦ is the Hadamard product, and the augmented matrices are defined as:

C(s) = [CT
1 (s), · · · ,CT

N(s)]
T ∈ Rl×n

K(s) = [KT
1 (s), · · · ,KT

N (s)]
T ∈ Rm×l

H(s) =


h11(s)1m1×l1 · · · h1N(s)1m1×lN

... . . . ...

hN1(s)1mN×l1 · · · hNN(s)1mN×lN


∈ Rm×l

(4.8)

The corresponding MIMO closed-loop transfer function from the reference input to

the system states is

GCL(s) = (Il +GOL(s))
−1 GOL(s). (4.9)

If the dynamics of each agent is identical with the same system matrices AI and BI , the

agents are not interconnected with others, i.e. n = Nni, and the communication dynamics

is negligible, i.e. H(s) = 1m×l , the open-loop transfer function is simplified as:

G∗OL(s) = L⊗ (CI(s)GI(s)KI(s)), (4.10)

where L ∈ RN×N is the Laplacian matrix of a graph, ⊗ stands for the Kronecker product,

KI(s) ∈ Rmi×li is the control of each agent, CI(s)Rli×ni is the observer of each agent, and

GI(s) ∈ Rni×mi is the dynamics of each agent as:

GI(s) = (sIni−AI)
−1BI. (4.11)

This simplified model is widely used in formation control, synchronisation, and con-

sensus problems where the relative values between the agents are controlled. Despite the

restrictive assumptions, it is worth analysing for its simplicity in showing a direct effect

of the network topology on the system transfer function.

Note that the characteristics of a network topology is commonly represented with its
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Laplacian matrix in network theory. The Laplacian matrix is defined as:

L = [li j], li j =


n

∑
k=1

aik, j = i

−ai j, j 6= i.

, (4.12)

where ai j is the elements of the adjacency matrix, representing the degrees from node

i to j. The eigenvalues of the Laplacian matrix infer to important characteristics of a

network topology, such as connectivity and cyclic network, which is detailed along with

its relationship on the networked system in Section 4.3.

4.3 Analysis Metrics

4.3.1 Stability

Two major criteria for the robustness and performance of the networked system are de-

fined for analysis. Prior to evaluating the robustness of the system stability against uncer-

tainties, disturbances, etc., the stability of the networked multi-agent system needs to be

clarified.

Definition 1 (Asymptotic stability). Suppose an equilibrium xe such that Axe = 0.

• The equilibrium xe is Lyapunov stable, if there exists a δ > 0 such that, if ||x(0)−

xe||< δ , then ||x(t)− xe||< ε for all t ≥ 0.

• The equilibrium xe is asymptotically stable, if it is Lyapunov stable and there exists

δ > 0 such that, if ||x(0)− xe||< δ , then lim
t→∞
||x(t)− xe||= 0.

Regarding the equilibrium at the origin, i.e. xe = 0, either the Routh–Hurwitz stability

criterion or the Nyquist criterion states the sufficient and necessary condition for a linear

time invariant system to be asymptotically stable. The criterions stated in [66] and [67]

are used respectively.
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Lemma 1 (Routh–Hurwitz stability criterion). For a linear system ẋ(t) = Ax(t), the equi-

librium x(t) = 0 is asymptotically stable if and only if

Re(λ )< 0, ∀λ ∈ λ (A), (4.13)

where Re(·) is the real part of a value, and λ (·) denotes a set of eigenvalues of a matrix.

Lemma 2 (Nyquist criterion). Let R(0, Il +GOL(s),ΩR) be the number of clockwise en-

circlements of the point 0 by the locus of Il +GOL(s) as s traverses the closed contour

ΩR in the complex plane in a clockwise sense. The Nyquist criterion states that a closed-

loop system is asymptotically stable with respect to the origin if and only if the following

equation is satisfied:

R(0, Il +GOL(s),ΩR) =−P, (4.14)

where P is the number of CRHP zeros of GOL(s), and the Nyquist contour ΩR avoids

imaginary zeros of GOL(s) by indentations of radius 1/R.

Using Lemma 1, proving the sufficient condition for the asymptotic stability of the

networked system is straightforward.

Theorem 1 (Asymptotic stability of the networked system). Suppose a networked system

of the identical agents without physical coupling, the relative states of which are con-

trolled with linear control u(t) =−(L⊗KI)(x(t)−r). The states of the networked system,

x(t), asymptotically converge to the reference inputs r if

Re(λ )< 0, ∀λ ∈ λ (AI). (4.15)

Proof. Define the error between the states and reference inputs as e(t) , x(t)− r. The

error dynamics is obtained as:

ė(t) = Are(t)+Brr(t) (4.16)
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where Ar = A−B(L⊗KI).

The eigenvalues of the system matrix Ar are obtained as:

λ (Ar) = λ (IN⊗AI− (IN⊗BI)(L⊗KI))

= λ (AI−L⊗BIKI).

(4.17)

From the properties of the Kronecker product, the eigenvalues can be decomposed as:

λ (Ar)⊆
{

λA−λLλBK

∣∣∣
λA ∈ λ (AI),λL ∈ λ (L),λBK ∈ λ (BIKI)

}
.

(4.18)

As the minimum eigenvalue of the graph Laplacian is 0, from Lemma 1, the equilib-

rium e(t) = 0 is asymptotically stable if

Re(λ )< 0, ∀λ ∈ λ (AI). (4.19)

Note that the condition for asymptotic stability in Theorem 1 is restrictive. For in-

stance, consider a networked system with AI = 0 and BI = 1, which does not satisfy the

sufficient condition in Theorem 1. According to Definition 1, the networked system is

asymptotically stable with respect to a set of equilibria x(t) = {β1n×1|β ∈ R} if the rank

of the Laplacian is N− 1 [68]. In case the relative states are considered important, such

as formation control, consensus, and synchronisation problems, the networked system

asymptotically solves the problem even with AI = 0. Theorem 1 is applied for the refer-

ence tracking problems only, but provides a direct linkage with the robustness analysis in

linear control theory.
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4.3.2 Robustness

In linear control theory, the robustness of the stability is usually represented as stability

margins – gain and phase margin. Unlike the classical stability margins of single-input-

single-output (SISO) system, the stability margins of a multi-variable system involve both

lower and upper bounds of the gain and phase variation as the following definition.

Definition 2 (Stability margin in MIMO system). Given GM1 and GM2, any gains, GM1 <

γi < GM2, inserted in the feedback loops either simultaneously or independently will not

destabilise the closed-loop system. Similarly for PM1 and PM2, every loop may have a

phase factor e jφi with PM1 < φi < PM2 and the system will remain closed-loop stable.

Based on Lemma 2, the values of GM’s and PM’s are obtained by computing the

minimum distance of the matrix Il +GOL(s) from the singularity. Disk margin defines

a disk such that any simultaneous phase and gain variations do destabilise the system

if the perturbations remain inside the disk [15, 69]. The resultant GM’s and PM’s are

symmetric, in case the characteristics of either the system or uncertainty is not known.

Lemma 3 (Disk margin). Define a constant α(ω) as:

α(ω) =
1

µ((Il−GOL( jω))(Il +GOL( jω))−1)
, (4.20)

where µ(·) is defined as:

µ(M) = 1/min
∆
{σ̄(∆) : det(Il +M∆) = 0}. (4.21)

Then, the gain and phase margins are guaranteed by

GM =
1∓α∗

1±α∗
, PM =±2tan−1

α
∗, (4.22)

where α∗ = minω α(ω).
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Here, the µ-synthesis can specify the structure of uncertainty ∆ [70]. If the uncertainty

is diagonal, i.e. no coupling between the agents’ uncertainties, µ(M) is the same as the

size of maximum eigenvalue, max |λ (M)|. With its off-diagonal terms, the value is upper

bounded by the maximum singular value, σ̄(M). In the networked system, the uncertainty

in the control u(t) is contributed not only by its own model uncertainties and measure-

ment errors, but also by the uncertainties of the connected agents and transmission errors

between them. The stability margin from µ-synthesis is therefore approximated to the

eigenvalue when there is no interaction between any agents’ control input, while the mar-

gin may decrease to singular value with the presence of interaction among all the agents’

control.

Assuming there is no physical interconnection between the agents, the stability margin

can be expressed as a function of λ (L) and λ (GI(s)) as the following theorem.

Theorem 2 (Stability margin of the networked system). Suppose a networked system of

the identical agents without physical coupling. The disk margin of the networked system

is obtained as:

α(ω) = min|λ ((Il +G∗OL( jω))(Il−G∗OL( jω))−1)|

= min
{
|1+λLλG|/|1−λLλG|

∣∣∣
λL ∈ λ (L),λG ∈ λ (GI( jω))

}
.

(4.23)

Based on that the delay is mainly caused by the media accessing time, the delay is

applied on each channel depending on the geodesic distance from the receiving to the

transmitting agent, and does not effect on the agent itself. The delay margin is thus defined

differently from the phase margin by

DM = argT det(Il +GOL(s)) = 0. (4.24)
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4.3.3 Performance

The reference tracking performance is evaluated through the sensitivity function defined

as:

|S(s)|=
1

σ(Il +GOL(s))
, (4.25)

where σ(·) is the minimum singular value of a matrix.

For improving the tracking performance, it is desirable to have a small value of |S(s)|

over low frequency domain. The following remark states the main characteristics of the

sensitivity function in the networked system.

Remark 1. For the networked system without physical interconnections, if the asymptotic

stability condition in Theorem 1 holds, the minimum singular value of the matrix Il +

G∗OL(s) converges to σ(Il +L⊗GI(0)) over low frequency. Considering that the minimum

singular value represents the size of a matrix, the increase in ||L|| and ||GI(0)|| tends to

diminish the sensitivity function |S(s)|.

Suppose a SISO agent dynamics GI(s) = bk/∏
ni
i=0(s+ ai), where ai > 0, b > 0, and

k > 0 are defined to satisfy the asymptotic stability condition in Theorem 1. Either the

decrease of ai or increase of b increases the value of ||GI(0)||, and accordingly results in

the decrease of |S(s)|. The findings can be summarised as:

• Effect of network topology: The increase in ||L||, which corresponds to higher con-

nectivity of a graph, improves the reference tracking performance.

• Effect of agent dynamics: The decrease of ai and increase of b or k is beneficial

for the performance metric, implying that the slow convergence speed of individual

agents is preferred for the performance of the whole network.

Note that there has been a previous work on analysing the convergence speed by eval-

uating the eigenvalue of the error dynamics [64]. Whereas the previous work considers
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AI = 0 only, the approach can be extended to general AI as:

λ (Ar)⊆
{

λA−λLλBK

∣∣∣
λA ∈ λ (AI),λL ∈ λ (L),λBK ∈ λ (BIKI)

}
.

(4.26)

It is inferred from this equation that the increase in the network connectivity, control

gain, and convergence speed of individual dynamics improves the convergence speed.

However, under the assumption of accessing delay between the agents, the network con-

nectivity and control gain also increase the effect of accessing delay, leading to the slow

convergence. Considering the both aspects, the effect of network connectivity and control

gain is obscure using this metric. Also, the error between the convergent value and the

reference input is not considered in this metric. Hence, the sensitivity function S(s), rather

than the eigenvalue of the system matrix λ (Ar), is suggested to evaluate the performance

of the networked system.

4.4 Case Study

1 2 · · · N

(a)

1 2 · · · N

(b)

1 2 · · · N

(c)

Figure 4.2: Different network topologies

In this section, case studies are presented to show how the proposed analysis frame-

work can be applied to different networked systems. The networked systems of the iden-

tical agents without physical coupling are considered for the applicability of Theorem

1.
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4.4.1 First-Order System

The dynamics of the first-order system is first considered as:

AI =−a, BI = b, CI = 1, (4.27)

where a and b are positive real constants to satisfy the stability condition in Theorem 1.

The open-loop transfer function is obtained as

G∗OL(s) =
bK(s)◦H(s)

s+a
. (4.28)

Here, the relative states are controlled with a P-gain control, i.e. K(s) = kL.

The robustness analysis of the networked first-order system is shown in the following

theorems.

Theorem 3 (Stability margin of the first-order system). The analytic solution of the sta-

bility margin in Theorem 2 is obtained as:

α
∗ = min


√

ω∗+bkλi

ω∗−bkλi

∣∣∣
λL = λr + jλi, λL ∈ λ (L), λr,λi ∈ R

}
,

(4.29)

where the frequency at which the margin is obtained, ω∗, is computed for each λL as:

ω
∗ =−a

λr

λi
−|λL|

√
a2

b2k2λ 2
i
+1. (4.30)

When λi = 0 for all λL, the stability margin always satisfies α∗ = 1.

Proof. The disk margin is obtained as:

α
2(ω) =

(a+bλr)
2 +(ω +bkλi)

2

(a−bλr)2 +(ω−bkλi)2. (4.31)
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By differentiating the equation with respect to ω , the extrema are obtained in ω∗ such

that

λiω
∗2 +2aλrω

∗−λi(a2 +b2k2|λL|2) = 0. (4.32)

If λi = 0 for all λL, ω∗ is 0 from the equation and ∂α2/∂ω is always negative for all

ω > 0. As the value of α approaches 1 in high frequency domain, the stability margin

always satisfies α(ω)≥ 1.

If λi 6= 0, the minimum of α(ω) is obtained at

ω
∗ =−a

λr

λi
−|λL|

√
a2

b2k2λ 2
i
+1. (4.33)

From Theorem 3, it is inferred that if the network has an undirected graph in which the

eigenvalue of the Laplacian matrix is real, the stability margin satisfies α∗ = 1. If there

exists an imaginary part λi 6= 0, the increase of |λL| and λi/λr decreases the frequency

ω∗, and correspondingly the stability margin α∗. Also, the decrease of a and increase of

b deteriorates the stability margin.

Note that for the consensus problem with undirected graph, i.e. a = 0 and λi = 0, it is

known that the phase margin is proportional to 1/|λL| [64]. The relationship between λL

and the disk margin α∗ is different for the following reasons: the concept of α has been

developed for an asymptotically stable system, i.e. no CRHP poles; and the value of α

represents a conservative bound considering a simultaneous variation in gain and phase.

However, the tendency that the increase of |λL| decreases the margin remains with the

generalised system dynamics a.

The delay margin of the networked first-order system is derived differently from the

following theorem.

Theorem 4 (Delay margin of the first-order system). The delay margin of the first-order

system is infinite.
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Proof. The analytic solution of the closed-loop poles is derived from the characteristic

equation as:

s =−
f (k,T )

c3T

±

√
f (k,T )2− c4abkT 2− c5bkT − c6T

c3T
,

(4.34)

where f (k,T ) = aT + c1bkT + c2 and ci’s are non-negative real constants which vary

depending on the communication graph. The closed-loop poles stay on the left-hand-

plane regardless of the communication topology and time delay, resulting in the infinite

delay margin.

Remind that the delay margin is different from the phase margin obtained in Theorem

3. Under the assumption that an agent’s own states are accessed instantly, the delay from

the other agents does not destabilise the networked system.
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Figure 4.3: Root locus of the formation control with second-order dynamics
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4.4.2 Second-Order System

The stability of the networked second-order system is analysed. The dynamics of the

second-order system is generalised as:

AI =

 0 1

−a0 −a1

 , BI =

0

b

 , CI =

[
1 0

]
, (4.35)

where a, b and c are positive real constants. The relative value of the output is controlled

with a P-gain control, K(s) = kL.

The open-loop transfer function is obtained as:

G∗OL(s) =
bK(s)◦H(s)

s2 +a1s+a0
. (4.36)

The robustness of the networked second-order system is analysed in the following

theorems.

Theorem 5 (Stability margin or the second-order system). Suppose all eigenvalues of the

Laplacian matrix are real. The disk margin is obtained as:

α
∗ =


√√√√√2ω∗2 +a2

0−2a1−2bkλr

2ω∗2 +a2
0−2a1 +2bkλr

∣∣∣λr ∈ λL

 , (4.37)

where ω∗ is computed for each λL as:

ω
∗ =

√
a1 +

√
a2

0a1 +b2k2λ 2
r . (4.38)

Proof. The disk margin is obtained as:

α
2(ω) =

(ω2−a0 +bkλr)
2 +(a1ω +bkλi)

2

(ω2−a0−bkλr)2 +(a1ω−bkλi)2. (4.39)



4.4. CASE STUDY 77

By differentiating the equation with respect to ω , the extrema are obtained in ω∗ such

that
2λrω

∗5−3a1λiω
∗4−4a0λrω

∗3− (a2
1−2a0)a1λiω

∗2

−2a1λr(a2
1a0−a2

0 +b2k2|λL|2)ω∗

+a1λi(a2
0 +b2k2|λL|2) = 0.

(4.40)

If λi = 0 for all λL, the minimum of α(ω) is obtained at

ω
∗ =

√
a1 +

√
a2

0a1 +b2k2λ 2
r . (4.41)

Unlike the first-order system, the disk margin of the second-order system with λi = 0

is less than 1, depending on the system dynamics and network connectivity. The tendency

of the margin with respect to network topology λL and system dynamics a0, a1, and b

remains similar to the conclusions made from Theorem 3.

Prior to computing the delay margin, its existence is first investigated through the root

locus in Fig. 4.3. Three different communication graphs are considered as Fig. 4.2. The

communication graphs (a) and (b) have the same average degree, whereas the graph (b)

has the same average degree with maximum cyclic length, N, and the graph (c) is a fully

connected graph. The effect of delay is shown as the non-minimum phase zero and the

perturbation in the poles. As the gain k increases, two poles cross the imaginary axis for

all network topologies, implying that there exists a single upper bound for the gain k. The

delay margin T which makes this gain positive is computed in the following theorem.

Theorem 6 (Delay margin of the second-order system). For a fully connected network,

the delay margin is obtained as

DM =
4

(N−2)a1
(4.42)

Proof. When the network is fully connected, the matrix in Eqn. (4.36), of which the deter-



78 CHAPTER 4. ANALYSIS ON THE NETWORKED MULTI-AGENT SYSTEM

minant is the characteristic equation, is symmetric with the diagonal terms s2+a0s+a1+

bk(N−1) and the off-diagonal terms −bk(1− sT/2)/(1+ sT/2). For the determinant to

be zero, the following equation is obtained.

(s2 +a1s+a0 +bk(N−1))(1+ sT/2)

=−bk(1− sT/2) or (N−1)bk(1− sT/2)
(4.43)

Substituting s = jω , the closed-loop poles are on the imaginary axis if either of the

following equations are satisfied.


−T ω3 +(bk(N−2)T +bT +2a1)ω = 0

−(a1T +2)ω2 +2bkN +2b = 0

or


−T ω3 +(2bk(N−1)T +bT +2a1)ω = 0

−(a1T +2)ω2 +2b = 0

(4.44)

Considering that both the time slot T and the control gain k are positive, the condition

for the closed-loop stability is obtained as

k ≤
a1

b
·
(2/T )2 +a1(2/T )+b

2(2/T )− (N−2)a1
, T <

4

(N−2)a1
. (4.45)

Note that the resultant delay margin contradicts with the previous work [61]. For the

same second-order system, the trivial solution from the previous work is periodic as:

T =
πM

ω
, ω =

1

2

√
−a2

1 +4(1+(N−1)k)b, (4.46)

where M is a positive integer. This research provides more intuitive solution with lower

degree of characteristic equation, simplifying the analysis.
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4.4.3 Higher-Order System

For higher-order systems, the explicit expression of the stability margin is difficult to be

obtained analytically. Instead, the stability margin of different network topologies and

system dynamics is obtained numerically and shown in Fig. 8.1. In (i), (ii), (iii), and

(iv), the values of λr, λi, ai, and b vary from 0 to 1 respectively, to show the relationship

between each parameter and the stability margin. In the default case, the eigenvalue of the

Laplacian matrix is set as |λL|= 1/
√

2 and λi/λr = 1, and the agent dynamics is defined

as G(s) = bk/∏
ni
i=0(s+ai), where ai = 0.8 for all i, b = 0.2, and k = 1.

The following remark is observed from Fig. 8.1, generalising the interpretations in

Theorems 3 and 5.
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Figure 4.4: Stability margin with different network topologies & system dynamics

Remark 2.
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• Effect of network topology: From (i) and (ii), the increase of |λL| and λi/λr dete-

riorates the stability margin. It is known that |λL| is relevant with the connectivity

of a graph, and λi/λr with the cyclic network. Also, even though it is not directly

considered in the analysis, increase in the accessing delay has a similar effect on

increasing λi as a cyclic network, deteriorating the stability margin.

• Effect of agent dynamics: From (iii) and (iv), the increase of ai’s and decrease of b

or k improves the stability margin. The conclusion coincides with physical intuition:

dependence more on the agent’s own states than on the others’ is beneficial for the

stability margin.

Comparing with Remark 1, it is notable that there is a trade-off between the robust-

ness and performance. The effect of cyclic network or accessing delay is obscure in the

performance metric, but the network connectivity and agent dynamics has a conflicting

effect on the networked control system. When the connectivity of a graph is increased,

the robustness is degraded while the performance is improved. Also, the increase of ai’s

compared with b or k implies that the agents are more dependent on their own states,

increasing the robustness and losing the tracking performance of the whole system. This

analysis result suggests that the network or control gain should be designed not to achieve

both the robustness and performance, but to find a balance between them.

4.5 Numerical Simulations

4.5.1 Simulation Settings

The numerical simulations for the case studies are conducted to verify the robustness

and performance analysis. The values for the agent dynamics are specified as a = 2 for

the first-order system and a1 = 2, a0 = 1 for the second-order system. The value of b

is 1 for both cases. The reference input for the desired formation is given as a constant,

r(t) = [0.5345,0.2673,−0.8018]T . The communication graphs (a), (b), and (c) in Fig. 4.2
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Figure 4.5: Simulation results of the formation control with first-order dynamics

are used for the analysis, where the set of eigenvalues λ (L) is given as {0,0.382,2.618},

{0,1.5+0.866 j,1.5−0.866 j}, and {0,3,3}, respectively for N = 3.

4.5.2 Simulation Results

The error between the output and reference input is shown in Fig. 4.5 and Fig. 4.6 with

different control gain k and accessing delay T . For the networked first-order system in

Fig. 4.5, it is observed that the tracking performance of the fully connected network, (c), is

better than the networks with smaller connectivity. This supports Remark 1 on the effect

of network connectivity on the performance of the networked system. Also, comparing

(i) and (ii) with different k, the steady state error is improved in case of higher control

gain, validating the remark on the performance and agent dynamics in Remark 1. In (iii),

a higher time delay T = 1 sec is applied to observe the stability. The response is stable

regardless of the control gain and time delay as proven in Theorem 4.
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Figure 4.6: Simulation results of the formation control with second-order dynamics

The result in Fig. 4.6 proves that the stability and performance of networked second-

order system depends on the network topology, control gain, and time delay. In a similar

manner with first-order system, the tracking performance of the system is improved with

higher connectivity and control gain, as predicted in Remark 1. According to Theorem

6, the networked second-order system has a finite delay margin depending on the control

gain and agent dynamics as opposed to the first-order system. The instability is observed

with the network topology (b) in (i), and with all the topologies in (ii). This corresponds

with Remark 2 in that the stability margin of the cyclic network is smaller than the net-

works with λi = 0.

4.6 Conclusions

In this chapter, a new stability analysis method for the networked multi-agent system has

been proposed. The main idea is to model the networked system including the commu-
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nication dynamics into a single MIMO transfer function and to utilise the analysis tools

in linear control theory. The stability of the networked system is defined, and its robust-

ness against gain/phase variation and accessing delay is evaluated with stability and delay

margin. The analysis on first-, second- and higher order agent dynamics reveals the effect

of network topology and agent dynamics on the robustness metrics defined. Also, the

trade-off between the robustness and performance of the networked system is observed,

suggesting the network topology and control gain to be designed in consideration of their

balance. Numerical simulations with first- and second-order systems support the theoret-

ical analysis.

The strength of the proposed method lies on that it can analyse any agent dynamics,

controllers, and communication characteristics, if they could be modelled into a trans-

fer function. By combining network and control theory, the properties of a graph have

been explained in the view of controlling the agents. This research will provide an in-

sight for designing the network or control considering their effects on the robustness and

performance of the networked system.

For the future work, the analysis will be extended to physically coupled systems, e.g.

slung-load system [71], which showed different patterns in our initial study. Intuitively,

if the independently stable agents use others’ uncertain information in their control, the

robustness of stability should be degraded. However, in the physically coupled system

where it is important to know others’ information to maintain the stability, the larger con-

nectivity of a network might improve the stability even though the received information

is inaccurate. Also, for compensating the uncertainty and nonlinear dynamics, more com-

plicated controllers including nonlinear controllers will be considered. Approximation of

the stochastic packet dynamics into the deterministic transfer function will improve the

feasibility of the proposed analysis.
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Chapter 5

Parameter-Robust Linear Quadratic

Gaussian for Multi-Agent Slung-Load

Transportation

Abstract

This chapter copes with parameter-robust controller design for transportation system by

multiple unmanned aerial vehicles. The transportation is designed in the form of string

connection. Minimal state-space realisation of slung-load dynamics is obtained by New-

tonian approach with spherical coordinates. Linear quadratic Gaussian / loop transfer re-

covery (LQG/LTR) is implemented to control the position and attitude of all the vehicles

and payloads. The controller’s robustness against variation of payload mass is improved

using parameter-robust linear quadratic Gaussian (PRLQG) method. Numerical simula-

tions are conducted with several transportation cases. The result verifies that LQG/LTR

shows fast performance while PRLQG has its strong point in robustness against system

variation.

87
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5.1 Introduction

Recently, unmanned aerial vehicles (UAVs) are getting attention for both military and

civilian uses. In the future, transportation using UAVs is also expected to be common,

but a small light UAV generally does not have enough power to lift a heavy load. Rather

than employing a larger UAV, cooperation of multiple UAVs can be an efficient approach

for transporting various types of payload. Interconnection of multiple UAVs results in

complicated equations of motion, as each UAV heavily affects the motion of the oth-

ers. Importance and possibility of employing multiple UAVs in transportation has been

mentioned in other previous studies [72]. Although there are many possible ways of coop-

eration, such as rigid gripping with clamps [73] and bar joint, string connection is chosen

in this study to maintain the degree of freedom of each UAV as shown in Fig. 5.1.

Figure 5.1: Slung-load system visualisation

In the previous studies, a single aircraft lifting one payload with a long string has been

considered [74, 75]. As these cases assume a sufficiently long pendulum, coupling effects

or aerodynamic disturbances on payload are negligible, and thus whole system does not

have to be included in the model. To consider coupling effects into model, Maza et al.

solved this problem using Kane method [76, 77, 78]. On the other hand, Bisgaard et al.

[79, 80] employed Udwadia-Kalaba Equation (UKE), which is more efficient in express-

ing constrained dynamics. Existing modelling techniques, both Kane and UKE method,

give the precise model of slung load transportation system, while state-space represen-
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tations are not minimal. As one string connection reduces one degree of freedom, the

minimum number of states is reduced by the number of strings. The existence of superfi-

cial states leads to a system model absent of controllability. Since the number of system

variables is large and the model is complicated, model reduction is not easy. Our previous

work [81] using UKE method, therefore, was not able to apply LQ-based controllers. To

circumvent the controllability problem, it is suggested to utilise the combination of spher-

ical coordinates and Cartesian coordinates [82]. The equation of motion is derived by

Newtonian approach as it is easier to generalise the equation of motion compared to the

Lagrangian approach. Unlike previous methods, tensile forces are computed by matrix

inversion with inclusion of internal force into the state vector.

Stability analysis and control of the modelled system is another major issue in this

chapter. Two approaches are possible for control design: control of each UAV with respect

to external disturbance including the effect of tension and control design considering the

whole system. Previously, studies in [74, 75] utilise the former and Michael et al. [83,

84] perform only stability analysis. In order to conduct aggressive control in response

to pendulum motion, whole system states are required to be controlled at the same time.

This research implements classical optimal control technique, linear quadratic Gaussian

(LQG) technique [85]. LQG is useful to find gains for complicated transportation systems,

while PID control, the most commonly used method, is hard to be implemented for large

number of states. The tuning of PID gains is generally performed by trial-and-error and

coupling between the longitudinal and lateral dynamics makes this tuning hard.

For practical use, it would be better to transport the payloads with various weights

without changing the controller. Also, continuous loss of weight during transportation is

common in agricultural uses. To improve the robustness of the LQG controller, loop trans-

fer recovery (LTR) [16, 17] or parameter-robust linear quadratic Gaussian (PRLQG) [86,

87] can be employed. PRLQG is expected to provide better robustness then LQG/LTR.

In addition to our previous work [82], frequency-domain analysis on stability proves the

improvements in robustness.
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This chapter is composed as follows. First, the mathematical modelling procedure of

multi-UAV slung load transportation system using Newtonian approach is presented. Sec-

ond, control design theory of LQG/LTR and PRLQG method is briefly reviewed, and the

transportation system model is reformulated into a moderate form for controller design

process. Third, numerical simulation using MATLAB is conducted to analyse the perfor-

mance of LQG/LTR and PRLQG controller. Finally, conclusion is drawn from numerical

results and future work is suggested.

5.2 Slung Load Transportation System Modelling

The following sub-sections suggest modelling procedure for transportation system with

Newtonian approach, assuming no aerodynamic force or fluctuation in strings. Only grav-

itational force and lift force of UAVs are assumed to be significant in the model. The

equation of motion is generalised with unspecified number and shape of UAVs. General

equation of motion is then reduced to two cases: one point mass transportation system

with one UAV, and one box payload transportation with four UAVs.

5.2.1 Derivation of General Equation of Motion

Figure 5.2: Slung-load system nomenclature
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System variables of transportation system with unspecified number of UAVs and type

of payloads are shown in Fig. 5.2. System variables chosen for modelling are position

and attitude of the load (xL= [xL,yL,zL]
T , θθθ L= [φL,θL,ψL]

T ), spherical coordinate angle

of the strings (θθθ i= [θi,φi]
T ), and attitude of each UAV (θθθV,i= [φV,i,θV,i,ψV,i]

T ), where

attitude information is required for computing direction cosine matrices (CE
V,i, CE

L ) and

spherical coordinate (C) is used to describe the motion of strings for constrained length.

The spherical coordinate is determined so that zero angles yield hovering condition as

follows:

C(θθθ) = l


sinφ

−sinθ cosφ

−cosθ cosφ

 (5.1)

Observing the geometric relationship in Fig. 5.2, position states of the UAVs (xV,i) are

determined as follows.

xV,i = xL +CE
L xL,ai +C(θθθ i)−CE

V,ixV,ai (5.2)

where xv,ai and xL,ai stands for the vectors from the centre of mass of vehicle or load

respectively to the attachment point of i-th string.

Applying Newton’s 2nd law of motion and Euler equation, the following equation is

the basic idea of modelling.



MV,iẍV,i = FV,i−∑TiC(θθθ i)/li

MLẍL = FL +∑TiC(θθθ i)/li

IV ω̇ωωV,i = τττV,i−∑Ti(xV,ai×CV,i
E C(θθθ i))/li

ILω̇ωωL = ∑Ti(xL,ai×CL
EC(θθθ i))/li

(5.3)

where ML or MV,i is a mass matrix with diagonal entries of mass mL or mV,i, I is an inertial

matrix, T is a tensile force, l is the length of a string, and ωωω is the angular velocity in the
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body frame. The forces FV,i and FL include the gravitational force as

FV,i = CE
V,iFM,i +MV,ig, FL = MLg, g = [0,0,g]T (5.4)

The inputs of the system are given as external forces (FM,i) and moments (τττV,i) re-

gardless of UAV dynamics. This modelling is for general type and dynamics of UAV, and

thus individual dynamics must be augmented separately.

Substitution of equation (5.2) into equation (5.3) yields relationship among system

variables and tensile forces. Although values of tensile forces are not measured, second-

derivative terms and tensile forces have linear relationship, and thus derivative terms can

be computed as an inverse matrix form as follows.

[
ẍT

L θ̈θθ
T
i ω̇ωω

T
L ω̇ωω

T
V,i Ti/li

]T

=

MV,i MV,iC′(θθθ i) MV,iC
′E
L xL,ai −MV,iC

′E
V,ixV,ai C(θθθ i)

ML 03×2 0003×3 03×3 −C(θθθ i)

03×3 03×2 03×3 IV,i xV,ai×CV,i
E C(θθθ i)

03×3 03×2 IL 03×3 −xL,ai×CL
EC(θθθ i)



−1



FV,i−∑i MV,i(G(θθθ i, θ̇θθ i)+GE
L xL,ai−GE

V,ixV,ai)

FL

τττV,i

03×1



(5.5)

The prime mark notes for differentiation not along the time but along the spherical

coordinate states of strings. To be specific, function C′ and matrix C′ is computed as

C′ ,

[
dC

dθ

dC

dφ

]
, C′xai ,

[
dC

dφ
xai

dC

dθ
xai

dC

dψ
xai

]
(5.6)

where the differentiated result is similar to the gradient in that the required form is an
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augmented matrix.

Function G and matrix is introduced to cope with first-derivative terms. For instance,

function G, which is related to spherical coordinate transformation function C, is defined

as

G(θθθ , θ̇θθ) =
d2C(θθθ)

dt2 −C′(θθθ)θ̈θθ
T

=−


φ̇ 2 sinφ

−(θ̇ 2 + φ̇ 2)sinθ cosφ

−(θ̇ 2 + φ̇ 2)cosθ cosφ

+2θ̇ φ̇


0

cosθ sinφ

−sinθ sinφ


(5.7)

while G is computed similarly.

The size of the inverse matrix in equation (5.5) is thus 3n+ 3 for two-dimensional

case and 6n+ 6 for three-dimensional case, when n stands for the number of UAVs. It

is the same as the summation of degree of freedom for n+ 1 agent, whereas the number

of system variables reduces by n as tensile forces do not belong to system variable. The

number of reduced variables can be also interpreted as n string constraints.

5.2.2 Equation of Motion for Sample Cases

The simplest transportation system is given with one UAV and a point mass load attached

to the centre of UAV with a single string. General equation of motion given in equation

(5.5) is reduced as follows:

[
ẍT

L θ̈θθ
T

T/l

]T

=MV MVC′(θθθ) C(θθθ)

ML 03×2 −C(θθθ)


−1

FV

FL

−
MV G(θθθ , θ̇θθ)

03×1


 (5.8)

As the string is connected to the centre of UAV, attitude of both load and UAV does not

influence the whole system behaviour. However, in case of a quadrotor-type UAV, pitch

and roll attitude can be determined by the relationship among external force vectors, as it
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generates thrust mainly in z-axis direction.

Figure 5.3: Slung-load system with four UAVs and a box payload

Expanding the modelling into four UAVs and a box, variables are determined as in

Fig. 5.3. When setting connection points to the payload, one must be careful not to

create uncontrollable mode. For instance, if all the strings are attached to a single point or

divided to two points, the matrix in the equation (5.5) becomes singular and at least one

mode of payload is not controllable. In this chapter, four UAVs are connected to the upper

points of the box as shown in Fig. 5.3. Even though the attachment points are determined,



5.2. SLUNG LOAD TRANSPORTATION SYSTEM MODELLING 95

4

2

Y (m)

0
-3

-2
0 -2

2

X (m)

4
6

-2

8
-410

12

-1

Z
 (

m
)

Start pt.

0

1

(i) 3D-plot

-2 0 2 4 6 8 10 12

X (m)

-4

-3

-2

-1

0

1

2

3

4

Y
 (

m
)

Start pt.

(ii) 2D-plot

Figure 5.4: Verification of slung-load dynamics excited with natural frequency

xL,ai’s differ by the size of load. The resultant equation of motion is

[
ẍT

L θ̈θθ
T
1 · · · ω̇ωω

T
L T1/l1 · · ·

]T

=

MV,1 MV,1C′(θθθ 1) 03×2(n−1) MV,1C
′E
L xL,a1 C(θθθ 1) 03×(n−1)

... 03(n−1)×2
. . . ... 03(n−1)×1

. . .

ML 03×2 03×2(n−1) 03×3 −C(θθθ 1) · · ·

03×3 03×2 03×2(n−1) IL xL,a1×CL
EC(θθθ 1) · · ·



−1



FV,1−∑i MV,i(G(θθθ i, θ̇θθ i)+GE
L xL,ai)

...

FL

03×1


(5.9)

5.2.3 Verification with Udwadia-Kalaba Equation

To verify the modelling, comparison with UKE is suggested [9-10]. Among all the previ-

ous works, modelling using UKE considered the most general case when the strings are

attached to the different point with centre of mass, and thus appropriate to be compared

with the model suggested in this thesis. UKE enables explicit computation of internal
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forces and moments with unconstrained states (qu), which is simply computed as

q̈u = M−1
[

FT
V,i τττT

V,i FT
L 01×3

]T

(5.10)

where augmented mass matrix M consists of mass of all the states, and the states are

composed of positions and attitudes of UAVs and payload. Utilizing the unconstrained

states, constraint force and moments are computed as

Fc = M
1
2 (A1M−

1
2 )

+
(A2−A1q̈u) (5.11)

where FC is different from tensile force as it includes forces and moments for all the state

variables. Matrices A1 and A2 are defined in order to present string constraints as

A1 = LT
i

[
CE

V,i −CE
V,ix̃V,ai −CE

L CE
L x̃L,ai

]
(5.12)

A2 = L̇T
i L̇i

−LT
i (CE

V,iω̃
2
V,ixV,ai +CE

V,ix̃V,aiI−1
V ω̃V,iIV ωV,i

−CE
L ω̃

2
LxL,ai−CE

L x̃L,aiI−1
L ω̃LILωL)

(5.13)

where L is a vector notation of strings as same as in Fig. 2. Using the equations from

(5.12) to (5.13), result of equation (5.11) yields constrained states as follows.

q̈b = q̈u +M−1Fc (5.14)

The UKE approach can be also represented by Newtonian approach similarly. Defin-

ing all the states the same, equation (5.11) and (5.14) can be unified in the form of equation
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(5.5) as

q̈b

T

=

M AT
1

A1 0


−1



FV,i

τττV,i

FL

03×1

0


(5.15)

In order to verify the modelling, simple case when one UAV is lifting one point mass

payload is considered numerically. As two modelling methods have different choices of

system states, spherical coordinates of Newtonian approach are converted to Cartesian

coordinates for reference. The resultant second derivatives showed error less than the

order of truncation error, and thus it can be concluded that the two modelling methods

are correct. Also, when the lift is given with sinusoidal form in natural frequency
√

g/l,

the pendulum motion enlarges as shown in Fig. 5.4. As swinging angle of the payload

increases, coupling force on UAV enlarges the trajectory of UAV. Intuitively, it can be

concluded that the moving pendulum dynamics and coupling effect is well-modelled.

5.3 Control Design

This section outlines design of controller. Classic control method LQG is implemented

in more analytic perspective. Then, PRLQG is added in order to improve robustness

along parameter variation. Finally, the modelled systems in section 2 are modified in an

appropriate form for control techniques.

5.3.1 Linear Quadratic Gaussian / Loop Transfer Recovery Tech-

nique

LQG is to optimise the cost of state errors and input in linearised state-space form. Even

though not all the states are observed, estimator is designed to compensate the error.
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Formulation of controller and estimator is presented as follows.

ẋ = Ax+Bu, y =Cx

u =−KCx̂, ˙̂x = (A−KFC)x̂+Bu+KFy
(5.16)

Here, the system dynamics is linearised from Section 5.2, with a trim point at the

hovering state and non-oscillating payload.

Through optimisation method, gains are obtained by the solution of the following

algebraic Riccati equation (ARE).

KC = R−1BT PC,, PCA+AT PC +Q−PCBR−1BT PC = 0

KF = PFCTW−1, PFAT +APF +V −PFCTW−1CPF = 0
(5.17)

Design parameters Q, R, V and W are determined by relative weighting among states,

state and command, model accuracy, and sensor accuracy, respectively. As these design

parameters have patterns, expanding the transportation system does not influence hardly

on determining them, and it acts as a strong advantage compared to PID control technique.

As LQG may not have desirable robustness, LTR is augmented to recover open-loop

gain. LTR is conducted by modifying the design parameters to get sensitivity recovery or

robustness recovery as follows.

robustness recovery : Q = Q0 +w2
C,LT RCTC

sensitivity recovery: V =V0 +w2
F,LT RBBT

(5.18)

While increasing the weight of LTR (w2
LT R) improves robustness or sensitivity, the

controller gains also increase along with the weight of LTR, resulting in the aggressive

manoeuvre. Considering both robustness and performance, w2
LT R, is selected to have the

open-loop gain as close as possible to the target loop function at crossover frequency.

The target loop function is defined as a transfer function to which the open-loop gain

theoretically converges as w2
LT R approaches infinity. The LQG/LTR open-loop gain G2



5.3. CONTROL DESIGN 99

and the target loop function G1 are computed by following equations.

G1(s) = KC(sI−A)−1B

G2(s) = KC(sI−A+BKC +KFC)−1KFC(sI−A)−1B
(5.19)

Two important assumptions for applying LTR are that the system must be minimum

phase and the number of measured states needs to be larger than that of control inputs.

If the system has right half-plane closed-loop poles, the extra phase lead contributed by

these poles is required for maintaining stability. Also, measurements should be suffi-

cient for adding dummy columns to B and zero rows to KC to make C(sI−A)−1B and

KC(sI−A)−1B square matrices. As C(sI−A)−1B must remain as a minimum phase sys-

tem, enlarging C matrix or using smaller number of measurements is inappropriate.

For simple transportation system with one UAV lifting a point mass payload, actual

and target loop functions from equation (5.19) near the crossover frequency are given in

Fig. 5.5. Weightings are given for robustness recovery, and transfer function is from x-

axis to x-axis (Gxx) to show fluctuation control. Weighting value of 100 is expected to be

most appropriate to make the transfer function closest to the target function. Resultant

root locus is shown in Fig. 5.6. The system dynamics has two poles at the origin and

another two poles on the imaginary axis as equation (5.20).

Gxx =
ω2

n

mV s2(s2 +
mV +mL

mV
ω2

n )

(5.20)

where ωn is a natural frequency
√

g/l

Four poles and three zeros are added from LQG or LQG/LTR controller, and two

zeros among them are located near to the system poles. It can be expected that the system

changes might cause large change in root locus shape.
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Figure 5.6: Root locus of LQG and LQG/LTR

5.3.2 Parameter-Robust Linear Quadratic Gaussian

PRLQG is applied to the system in which structure uncertainties such as parameter vari-

ation is expected. The estimated parameter change is reformulated in a fictitious loop

called internal feedback loop (IFL), and then controller is designed to maintain robust-

ness against the IFL. In order to implement PRLQG, perturbation of linearised system

matrix A caused by parameter variation is decomposed as follows.

∆A = MεN (5.21)
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where matrix M is column-similar to the system matrix A. Using the decomposed matrices

M and N, design parameters introduced in the previous session are modified with the

following equations.

Q = Q0 +w2
C,PRLQGNT N

V =V0 +w2
F,PRLQGMMT

(5.22)

where w2
LT R can still be added in case of losing controllability. The ratio between the

weight of LTR and that of PRLQG is varied according to the design purpose. If robustness

to the parameter variation is considered to be more significant than fast performance, the

weight of PRLQG must be increased compared to that of LQG/LTR. When the mass of

payload is exact enough, the weighting of PRLQG is not required to be large. Increasing

the weight of PRLQG, the system’s robustness function G2 approaches to the target loop

function G1.

G1(s) = N(sI−A+BKC)
−1M

G2(s) = N(sI−A)−1M

−N(sI−A)−1BK(I +GK)−1C(sI−A)−1M

(5.23)

where function K and G is defined as

K(s) = KC(sI−A−BKC +KFC)−1KF

G(s) =C(sI−A)−1B
(5.24)

As robustness function is the transfer function from parameter variation to output,

gain is required to be similar throughout the range of interest.

Similar to the previous subsection, one UAV transportation system is considered for
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instance. As system matrix A is obtained as follows,

A =



0 0 0 0 g

0 0 0 −g 0

0 0 0 0 0

0 0 0 −mV+mL
mV l g 0

0 0 0 0 −mV+mL
mV l g


(5.25)

column-similar matrices M and N are defined as

∆A = MεN =



0 0

0 0

0 0

− g
mV l 0

0 − g
mV l


∆mL

0 0 0 1 0

0 0 0 0 1

 (5.26)

Bode plot of resultant transfer functions from mass variation is shown in Fig. 7.

Compared with the result of LQG/LTR, PRLQG control shows relatively steady gain

against parameter variations, whereas target function has more steady gain. As seen in

the bode plot, the mass variation is magnified up to 42 dB with LQG/LTR, where the

magnitude of the transfer function of PRLQG is upper bounded by -5 dB. Hence, less

variation on performance along the parameter change is expected.

From the root locus of PRLQG in Fig. 8, zeros of the controller are placed near to the

system poles at real axis. From the root locus shown in Fig. 6, it is clear that the system

with LQG/LTR easily becomes non-minimum phase. On the other hand, Fig. 8 shows

that parameter change does not cause large change in root locus trajectory of PRLQG.

Therefore, improvements in robustness against parameter change is evident both from

bode plot and root locus.
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Figure 5.8: Root locus of PRLQG

5.4 Numerical Results

In this section, simulation setups and numerical results are presented. Specifications of

UAVs and payload, and design parameters of controller introduced in previous sections

are set. Then, result of applying the setups is presented.

5.4.1 Simulation Settings

The simulation is set with a single UAV and four-UAV transportation system. Specifica-

tion of UAV and payload is given in Table 1. Size and weight of all the UAVs are set to
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Table 5.1: Slung-load system specification

Case 1 Case 2
UAV Number 1 4

Mass(kg) 0.408

Size(m) φ 0.356

Inertia(kg·m2) 2.2842·10-3 × 2.4451·10-3 × 4.4562·10-3

Payload Type Point mass Box

Mass(kg) 0.1 0.4

Size(m) None 0.2 × 1.0 × 1.0

String Mass(kg) None

Size(m) 1.4

be identical. The modelled mass of payload is set to be constant, and the mass or thick-

ness of string is neglected. The type of UAV is selected as a small quad-rotor, AR. Drone

2.0 from Parrot, which shows the most stable hovering performance in its mass and size.

Control allocation from rotational speed of rotors to force and moment of AR. Drone is

defined as

FM =


0

0

−4Kt,0−Kt(Ω
2
1 +Ω2

2 +Ω2
3 +Ω2

4)

 (5.27)

τττV =


Kt(−Ω2

1−Ω2
2 +Ω2

3 +Ω2
4)d + Irq(Ω1−Ω2 +Ω3−Ω4)

Kt(Ω
2
1−Ω2

2−Ω2
3 +Ω2

4)d− Ir p(Ω1−Ω2 +Ω3−Ω4)

4Kr,0 +Kr(Ω
2
1−Ω2

2 +Ω2
3−Ω2

4)

 (5.28)

where d is the distance from the center of UAV to rotors, Ir is the inertia of UAV, and p and

q are the roll and pitch rate, respectively. Also, Ωi’s are the rotational speed of each rotor,

saturated by maximum of 4787.1 rpm, and the rotor coefficients for thrust computation
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and torque are given as follows:

Kt = 8.1763 ·10−6, Kt,0 = 0.0562N (5.29)

Kr = 2.1703 ·10−7, Kr,0 = 1.0950 ·10−4N ·m (5.30)

For the details of quad-rotor dynamics, refer to [88].

In order to evaluate the controller’s robustness against the mass variation, numerical

simulations are conducted with four different cases: when the actual mass (1) is equiva-

lent to the modelled mass, noted as the standard case, (2) has a constant mismatch with

the modelled value with -20%, (3) has again a constant difference with +20%, and (4)

is varying from +20% to -20% with a constant rate during the transportation. Also, to

analyse the effect of time delay and maximum thrust, 0.1 sec of motor delay is applied,

and maximum rotor speed is reduced by -20%. The effects are shown by the response in

x-axis the same command (1, 1, -1) m, as the designed payload transportation system is

symmetric in x-y axis. Compared to z-axis performance, x- and y-axis response has more

district changes, as perturbation of A matrix in equation (5.26) lies in the string motion

influencing mainly on x-y motion of the load.

Design parameters for the LQG-based controllers are set as follows: Q is 5 and 1, and

W is 0.1 and 1 for non-derivative terms and first derivative terms respectively. Diagonal

terms of R for all the states are set 10, and those of V are 0.01. These rules are applied not

only for the two cases we are dealing with, but also for further expansion of transportation

system.

MATLAB simulation structure for one UAV and a point mass is given in Fig. 5.9,

while larger transportation system is composed in similar sense. From dynamics, posi-

tions and attitudes of load and string is given, which is later used in calculating position

of UAVs. Summation of input trim enables the linearised dynamics to be approximated to

nonlinear dynamics. The command is given in feedforward structure with N̄ matrix given
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as

N̄ = Nu +KCNx, where

Nx

Nu

=

A B

C D


−10

1

 (5.31)

Figure 5.9: Simulation structure

5.4.2 Simulation Results

Simulation is first conducted for the single UAV slung load transportation system. The

effect of variation in payload mass is demonstrated via the step responses of LQG/LTR

and PRLQG in Fig. 5.10, and the trajectory of PRLQG-applied case is shown in Fig. 5.11

for reference. While the standard response of the LQG/LTR controller is fast and fluctuat-

ing, the system controlled by PRLQG has longer settling time but stable response. When

there is a difference between the actual and modelled payload mass, the fluctuation in

the LQG/LTR-controlled response is increased, resulting in instability for the cases with

-20% and continuous variation. However, the responses of the PRLQG-controlled system

remain similar in all cases. It is clearly shown that the PRLQG technique improves the

robustness against the payload variation as expected from Section III.

The effect of time delay and motor thrust is shown in Fig. 5.12. Where the LQG/LTR

controller shows unstable performance in the presence of time delay, the step response of

the PRLQG control remains similar. The phase margin of the PRLQG is 69.5779 deg,

whereas the phase margin of the LQG/LTR control is 11.0032 deg. The result implies
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Figure 5.10: Simulation results: effect of payload variation in 1-UAV transportation sys-
tem

that the PRLQG improves not only the robustness against parameter variation, but the

phase margin. Reducing the maximum rotor speed seems to suppress the manoeuvre,

which means that the LQG/LTR controller without saturation has aggressive manoeuvre.

Increasing the PRLQG gain on the other hand smoothens the response. The problem

of having higher gains of the LQG/LTR control can be resolved through applying the

PRLQG.

Second, the step response of LQG/LTR and PRLQG of four-UAV slung load system

is shown in Fig. 5.13. Similar to a single UAV system, the LQG/LTR controller shows

a fluctuating, aggressive manoeuvre. In the presence of mass variation, the response

further fluctuates and even becomes unstable. On the other hand, the PRLQG method

shows stable performance, proving the improvements in the robustness against parameter

variation. Although the root locus and bode plot are not analysed for the slung load system

with more than one UAV, simulation results demonstrate enhanced robustness against the

payload’s mass variation with the PRLQG method.

The responses with time delay and reduction of motor thrust in four-UAV system is

shown in Fig. 5.14 The LQG/LTR controller shows instability against the delay, implying

that the phase margin is improved through the PRLQG method. Also, lower limit of

saturation in the maximum thrust results in more suppression in the LQG/LTR-controlled

system, while only the overshoot is suppressed in the PRLQG method. Similar to a single
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Figure 5.11: Simulation results: trajectory of PRLQG-controlled 1-UAV transportation
system

UAV system, the PRLQG method does not result in aggressive manoeuvre.

5.5 Conclusions

In this chapter, transportation system with multiple UAVs and string connection is mod-

elled and controlled. Modelling is conducted with Newtonian method, combining spheri-

cal coordinates with Cartesian coordinates and using matrix inversion to compute tensile

force. The proposed modelling method uses less number of states compared to other

previous methods, resulting in smaller size of matrix inversion. Therefore, the proposed

method is expected to reduce the computational load. Moreover, the fact that LQG gains

can be obtained implies that the linearised system is controllable. The corresponding

controller is designed using PRLQG technique. While previous studies did not focus

on controller or utilised simple PID controllers, applying analytic control technique is a
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Figure 5.12: Simulation results: effect of system parameters in 1-UAV transportation
system
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Figure 5.13: Simulation results: effect of payload variation in 4-UAV transportation sys-
tem

significant idea of this research. Also, implementation of the PRLQG method, which is

not well-known compared to classic controls like LQG/LTR, resulted in improvements in

transporting varying mass of payload. Computer simulation shows simple verification of

modelling and analysis of improvements not only in parameter robustness of controller,

but also in phase margin and smooth performance.

Further studies are expected to include more details in cable modelling. Slackening

of the wires or even loosing tension during the transportation would be a practically sig-

nificant issue. Snapping of the cables would be modelled by excluding the corresponding

UAVs from the constraint model, and adding on extra tension when it is first tightened.
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Figure 5.14: Simulation results: effect of system parameters in 4-UAV transportation
system

Also, integration of unit length commonly used in architecture would be applied to model

the elasticity of long wires. Consideration of aerodynamic forces would be another prac-

tical challenge. The effect of thrust of the UAV on the payloads might require further

investigation, especially in consideration of oscillation, unpredicted behaviours, and even

loss of stability. This issue, which is subject to future study, could be resolved either by

refining the model to include the aerodynamic forces or by designing the controller robust

to the wind disturbance. Experiments would be a valuable verification for the modelling.

Another important issue is rotor failures. In system matrices, partial reduction of

performance due to the rotor failures are directly related to the variation in B matrix, which

can be covered by PRLQG method. It is expected to improve the robustness against the

failures compared with the other linear controllers. Apart from linear controllers, applying

adaptive controllers would be another interesting issue, as the parameter uncertainty can

be structured.
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Chapter 6

Control Synthesis for Multi-UAV

Slung-Load Systems with Uncertainties

Abstract

This chapter develops a new control synthesis for the slung-load transportation system

by multiple unmanned aerial vehicles. Effects of the unmatched uncertainties that cannot

be directly controlled by the adaptive control are suppressed using the parameter-robust

linear quadratic Gaussian method. The stability condition of the tracking and parameter

estimation error is proven with Lyapunov analysis. The numerical simulations support

the enhancement of robustness and system performance in the presence of both the un-

matched and matched uncertainties in the slung-load system.

6.1 Introduction

The large scale of unmanned aerial vehicle (UAV) applications has proliferated vastly

within the last few years. The operational experience of UAVs has proven that their tech-

nology can bring a dramatic impact to military and civilian areas. This includes, but is not

limited to: obtaining real-time, relevant situational awareness; helping human operators;

113
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and reducing risk to the mission and operation. Potential applications of UAVs under

consideration are quite wide, e.g. border patrol [89, 90, 91], airborne surveillance [92,

93, 94], police law enforcement [95, 96], and forest-fire localisation [97]. One important

application that has been attracting an increasing attention is logistics.

This chapter addresses a logistics problem using a group of small UAVs. While small

UAVs are advantageous in their accessibility and convenience, their payload is limited.

This implies that cooperation of multiple UAVs is inevitable to relieve payload constraints.

There could be a few ways to enable a group of small UAVs to cooperate for the logistics.

One of the most obvious approaches is to utilise a slung-load system in which the vehicles

are connected to the payload with suspended cables. Hence, this research considers the

slung-load system as the approach for UAV cooperation in logistics.

Dynamics model of the slung-load system may contain both unmatched and matched

uncertainties. Note that the matched and unmatched uncertainties are the uncertainties

that lie in the span and the null space of the control input matrix, respectively. UAVs are

most likely to deliver various masses of the load. Mass of the load could not be exactly

known prior to the operation or could change during the operation. The issue with such

uncertainty on the mass is that it generates unmatched uncertainty to the system. The

dynamics of the slung-load system is highly coupled and encompasses highly nonlinear

terms. This means that a dynamics model of the slung-load system typically contains

modelling uncertainty, which also generates matched uncertainties to the system.

Control of a slung-load system is challenging. The motion of each UAV in the slung-

load system could be constrained due to the cables connected to the UAV. Oscillation of a

vehicle or payload is transmitted through the connected strings to the other vehicles with

constrained motion, potentially resulting in instability. The existence of both unmatched

and matched uncertainties makes control of a slung-load system even much more chal-

lenging.

To this end, this chapter aims to develop a control synthesis to tackle the challenge

in the slung-load system control under the presence of unmatched and matched uncer-
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tainty. The model reference adaptive control (MRAC) method is an option for being a

well known parameter-robust controller. However, most MRAC methods are limited to

cancel out the effect of the matched uncertainties. The unmatched uncertainties can be

neither estimated, nor cancelled out by common MRAC methods.

While the majority of the previous works focused on the matched uncertainties, there

have been some studies specifically on the unmatched uncertainties. As controlling the

unmatched uncertainties directly in the MRAC formulation is not possible, the bound of

the unmatched uncertainties has been investigated by [98]. The detailed effects on the

robustness are analysed with linear matrix inequality in [99]. Under the assumption that

the unmatched uncertainties are bounded, modifications on the MRAC, such as L1 adap-

tive and bi-objective control, have been proposed in [100, 101]. The modifications are

focused mainly on preventing the tracking error from drifting. To suppress the specific ef-

fect of unmatched uncertainties, adaptive sliding mode control is suggested by [102], and

later extended to multiple sliding surfaces in [103] and to cope with time delays in [104].

The adaptive sliding mode control, unlike the MRAC, pursues the states to converge on

the sliding surfaces regardless of the reference model. In [105], the concurrent learning

MRAC method is used to fully utilise the reference model and to control the unmatched

uncertainties by switching the baseline control gain after estimating the unmatched uncer-

tainties. In the actual implementation, however, it is difficult to know the correct values

of the unmatched uncertainties and thus the gain switching time remains illusive.

This chapter proposes a new adaptive approach to cope with both matched and un-

matched uncertainties by using the parameter-robust linear quadratic Gaussian method.

The approach consists of two parts: the baseline control is designed to be robust to the

unmatched uncertainties using the PRLQG method, and the adaptive control cancels out

the matched uncertainties with nonlinear basis from the reference model of the baseline

control. The previous works [82, 71] have suggested to use the PRLQG method to handle

the uncertainties in the payload. The PRLQG method determines the controller gain to in-

crease the stability margin against the parameter variation in the system state matrix [86,
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87]. The uncertainty in the system state matrix is assumed to be a function of the system

parameter only, implying that the robustness enhancement is limited to the uncertainties

with linear basis of states. The remaining uncertainties with nonlinear basis is estimated

and cancelled out by the adaptive control.

For the validation of the proposed control synthesis, the convergence of the tracking

and parameter estimation error are theoretically investigated using Lyapunov analysis.

The performance of the control synthesis is also demonstrated through numerical sim-

ulations. The simulation results for the slung-load systems with 1, 2, and 4 quadrotors

confirm the robustness of the proposed control synthesis against both unmatched and

matched uncertainty.

The rest of this chapter is composed as follows: in section 6.2, the problem formu-

lation is given. In section 6.3, the control synthesis method is proposed and analysed.

In section 6.5, the settings and results of numerical simulation is given. The chapter is

finalised with conclusion.

6.2 Problem Formulation

Consider a state-space representation containing the uncertainty as

ẋ(t) = Ax(t)+B(u(t)+∆(x))+Bu∆u(x) (6.1)

where x(t) ∈Rn and u(t) ∈Rm stand for state, input, and uncertainty vector, respectively.

The matched uncertainty ∆(x)∈Rm includes all the uncertainties that lie in the span of the

control input matrix B ∈ Rn×m, and the unmatched uncertainty ∆u(x) ∈ Rn−m lies in the

span of Bu ∈Rn×(n−m), which is the null space of the control input matrix. The state-space

representation is minimal and the system matrices (A,B) are constant and controllable.

The uncertainty ∆(t) is assumed to be linearly parametrised as

∆(t) =W ∗T (t)Φ(x(t)) (6.2)
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where W ∗(t)∈Rp×m is the unknown true parameter matrix, and Φ(x(t))∈Rp is the basis

vector.

The unmatched uncertainty is assumed to have a basis linear to x(t) as

∆u(x) = N∗T x(t) (6.3)

where N∗ ∈ Rn×(n−m) is a weight matrix.

The control input is denoted as

u(t) = [u1(t),u2(t), · · · ,uN(t)]T , yi(t) =Cix(t) (6.4)

where N is the number of agents, yi(t) ∈ Rl/N is the output for each agent, and ui(t) ∈

Rm/N is the control of each agent which is a function of yi(t) ∈ Rl from the connected

agents.

6.3 Control Design

The proposed control use the structure of the MRAC method as

u(t) = ubase(t)+uad(t) (6.5)

where the baseline control ubase(t) determines the reference model with the desired per-

formance, and the adaptive control uad(t) cancels out the effect of matched uncertainty

to track the reference model. The baseline control improves the robustness against the

unmatched uncertainty by using the PRLQG method, and the σ -mod adaptive law is used

to estimate the matched uncertainty. The stability of the controller is analysed with the

Lyapunov analysis.
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6.3.1 Parameter-Robust Linear Quadratic Gaussian

The unmatched uncertainty ∆u(x) is converted to the perturbation of the system matrix as

∆A = BuN∗T (6.6)

where the perturbation matrix ∆A ∈ Rn×n is implemented as

ẋ(t) = (A+∆A)x(t)+B(u(t)+∆(x)) (6.7)

The PRLQG method is applicable for the case that the variation in the system matrix

can be decomposed as

∆A = MPRεNT
PR (6.8)

where ε ∈ Rq×q is the system parameter variation, and MPR ∈ Rn×q and NPR ∈ Rn×q are

constant matrices. Noting that NPR is row-similar to N∗, the PRLQG gain is designed

with respect to NPR to enhance the robustness against N∗.

The baseline PRLQG controller is designed as

ubase(t) =−Kx(t) (6.9)

The gain of the baseline controller K =R−1BT P is obtained by the following algebraic

Riccati equation:

PA+AT P+Q+wPRNPRNT
PR−PBR−1BT P = 0 (6.10)

where Q ∈Rn×n and R ∈Rm×m are positive definite weight matrices for states and inputs

respectively, and wPR ∈ R is a positive weight for the PRLQG method.

The reference model with the desired performance is designed with the baseline PRLQG
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control as

ẋr(t) = Arxr(t)−Brr(t) (6.11)

where xr(t) ∈Rn is the reference state, r(t) ∈Rm is the external reference command, and

the system matrix Ar = A−BK is Hurwitz stable.

Defining the tracking error between the reference model and the actual system as

e(t), xr(t)− x(t), the tracking dynamics is expressed as

ė(t) = Are(t)−B(uad(t)+∆(x))−Bu∆u(x) (6.12)

If NPR(sI−A)−1B is minimum phase, it is proven that as wPR→ ∞, the transfer func-

tion from ∆u(x) to e(t) approaches 0, i.e.

ė(t)→ Are(t)−B(uad(t)+∆(x)) (6.13)

The details of the proof are given in [87], and for the bode plot analysis of the slung-

load system, refer to our previous work [71].

6.3.2 Adaptive Law

The matched uncertainty ∆(x) is cancelled out by the adaptive control as

uad =−Ŵ (t)T
Φ(x) (6.14)

where Ŵ (t) ∈ Rp×m is the estimate of the parameter W ∗.

The parameter is estimated with the following σ -mod adaptive law:

˙̂W (t) =−Γ
(
Φ(x)e(t)T PrB+σ(Ŵ (t)−Wguess)

)
(6.15)

where Γ ∈ Rp×p is the adaptation gain, σ ∈ Rp×p is the σ -mod gain, and Pr ∈ Rn×n is a
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positive definite matrix defined by the following algebraic Riccati equation:

PrAr +AT
r Pr +Qr = 0, Qr > 0 (6.16)

The σ -mod is applied with respect to Wguess ∈ Rp×m which is a constant guess of the

estimate of the parameter.

6.4 Lyapunov Stability Analysis

The stability of the tracking and parameter estimation error is analysed by Lyapunov

function. The following conditions for stability can be obtained:

Theorem 7.

1. If NPR(sI−A)−1B and wPR → ∞, the tracking and parameter estimation error is

Lyapunov stable with respect to e(t) = 0 and W̃ (t) =Wguess−W ∗.

2. If the condition 1) is satisfied and the signal is persistently excited, i.e.
∫

e(t)eT (t)dt >

0, the tracking and parameter estimation error is asymptotically stable.

3. If the condition 2) is satisfied and Wguess =W ∗, the tracking and parameter estima-

tion error is exponentially stable with respect to e(t) = 0 and W̃ (t) = 0.

Proof. Consider the following continuously differentiable, positive definite Lyapunov

function:

V (e,W̃ ) =
1

2
eT (t)Pre(t)+

1

2
tr(W̃ T (t)Γ−1W̃ (t)) (6.17)

where W̃ (t),Ŵ (t)−W ∗ is the parameter estimation error. Defining ξ (t), [eT (t),W̃ T (t)]T ,

the lower and upper bounds of the Lyapunov function are given as

1

2
min

(
λ (Pr),λ (Γ

−1)
)
||ξ ||2 ≤V (e,W̃ )≤

1

2
max

(
λ (Pr),λ (Γ

−1)
)
||ξ ||2 (6.18)
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The Lie derivative of the Lyapunov function is computed as

V̇ (e,W̃ ) = eT (t)Prė(t)+ tr(W̃ T (t)Γ−1 ˙̂W (t)) (6.19)

Substituting the tracking error dynamics in Eqn. (6.12) and the adaptive law in Eqn.

(6.15) gives

V̇ (e,W̃ ) =−
1

2
eT (t)Qre(t)+ eT (t)PrBu∆u(x)− tr(W̃ T (t)σ(Ŵ (t)−Wguess)) (6.20)

The Lyapunov is negative definite except e(t) = 0 and W̃ (t) =Wguess−W ∗ if

1

2
λmin(Q)||e(t)||> ||PrBu∆u(x)|| (6.21)

If NPR(sI−A)−1B is minimum phase, increasing the weight of PRLQG to infinity

leads to ||e(t)|| � ||Bu∆u(x)||, approximating the Lyapunov function as

V̇ (e,W̃ )→−
1

2
eT (t)Qre(t)− tr(W̃ T (t)σ(Ŵ (t)−Wguess)) (6.22)

The approximated Lyapunov function is bounded as

V̇ (e,W̃ )≤−
1

2
λmin(Qr)||e(t)||2−σ ||W̃ −Wguess +W ∗||2 (6.23)

Using the bounds of the Lyapunov function in Eqn. (6.18):

V̇ (e,W̃ )≤−
min(λ (Qr),2σ)

max(λ (Pr),λ (Γ−1))
V (e,W̃ ) (6.24)
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6.5 Numerical Simulations

The slung-load transportation system in Chapter 5 is considered for the numerical simu-

lation. The dynamics is briefly summarised, and then the simulation settings and results

are presented.

Figure 6.1: Slung-load system nomenclature

6.5.1 Slung-Load Dynamics

The system variables of the slung-load system are shown in Fig. 6.1. Note that bold fonts

are used for the vectors and matrices in this section in order to prevent the confusion with

the scalar variables. The subscripts V , L, and E stand for vehicle, load, and inertial frame,

respectively. The position of each vehicle and the load is denoted by xV,i ∈R3 and xL ∈R3

in the inertial frame, and the vector from the centre of mass to the point that the string is

attached is xai ∈ R3 in the body frame. The vector in the body frame is multiplied by a

direction cosine matrix CE
V,i ∈R3×3 or CE

L ∈R3×3 to present in the inertial frame, which is

a function of the attitude of each vehicle or the load, θθθV,i ∈ R3 and θθθ L ∈ R3 respectively.
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From the geometric relationship, the string vector is expressed as

C(θθθ i) = xV,i−xL−CE
L xL,ai +CE

V,ixV,ai

= li


sinφi

−sinθi cosφi

−cosθi cosφi

 ,
(6.25)

where li ∈ R is the length of the i-th string and θθθ i = [θi,φi]
T ∈ R2 is the string vector in

the spherical coordinate.

The equation of motion of the slung-load system is

[
θ̈θθ

T
i ẍT

L ω̇ωω
T
V,i ω̇ωω

T
L Ti/li

]T

=

MV,iC′(θθθ i) MV,i 03×3 03×3 C(θθθ i)

03×2 ML 0003×3 03×3 −C(θθθ i)

03×2 03×3 IV,i 03×3 xV,ai×CV,i
E C(θθθ i)

03×2 03×3 03×3 IL −xL,ai×CL
EC(θθθ i)



−1



FV,i−∑i MV,i(G(θθθ i, θ̇θθ i)+GE
L xL,ai−GE

V,ixV,ai)

FL

τττV,i

03×1


,

(6.26)

where ωωω ∈ R3 is the angular rate in the body frame, Ti ∈ R the tensile force, M ∈ R3×3

the mass matrix, and I ∈ R3×3 the inertia. The functions G(θθθ , θ̇θθ) ∈ R3, and GE ∈ R3×3

are defined as

G(θθθ , θ̇θθ) =


−φ̇ 2 sinφ

(θ̇ 2 + φ̇ 2)sinθ cosφ +2θ̇ φ̇ cosθ sinφ

(θ̇ 2 + φ̇ 2)cosθ cosφ −2θ̇ φ̇ sinθ sinφ

 ,
GE = (CE ×ω)×ω.

(6.27)
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The external forces, FV,i ∈ R3 and FL ∈ R3, include gravitational force as

FV,i = CE
V,iFM,i +MV,ig,

FL = MLg,
(6.28)

where g = [0,0,g]T is the gravitational acceleration vector. The force and moment gen-

erated by the vehicle, FM,i ∈ R3 and τττV,i ∈ R3, are obtained with respect to the quadrotor

dynamics as

FM,i =


0

0

−4Kt,0−Kt(Ω
2
1 +Ω2

2 +Ω2
3 +Ω2

4)

 ,

τττV,i =


Kt(−Ω2

1−Ω2
2 +Ω2

3 +Ω2
4)d

Kt(Ω
2
1−Ω2

2−Ω2
3 +Ω2

4)d

4Kr,0 +Kr(Ω
2
1−Ω2

2 +Ω2
3−Ω2

4)



+


Iriqi(Ω1−Ω2 +Ω3−Ω4)

−Iri pi(Ω1−Ω2 +Ω3−Ω4)

0

 ,

(6.29)

where Kt is the thrust coefficient, Kr the torque coefficient, d the distance between the

rotors, Ω the rotational speed of each rotor, and ωV,i = [pi,qi,ri]
T the angular rate of the

vehicle.

The control allocation of the quadrotor vehicle from the roll, pitch, yaw, and thrust

commands to the rotor speeds is



Ω1

Ω2

Ω3

Ω4


= Kc,0 +Kc



0.5 0.5 −1 1

−0.5 0.5 1 1

−0.5 −0.5 −1 1

0.5 −0.5 1 1





uroll

upitch

uyaw

uthrust


, (6.30)

where Kc is the control allocation coefficient.
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For the linearised dynamics, the state and control input vector of the slung-load dy-

namics are defined as

x(t) = [θθθ T
i (t),θθθ

T
V,i(t),x

T
L (t),θθθ

T
L (t),

θ̇θθ
T
i (t),ωωω

T
V,i(t), ẋ

T
L (t),ωωωL(t)T ]T ∈ Rn,

u(t) = [uroll(t),upitch(t),uyaw(t),uthrust(t)]T ∈ R.m,

(6.31)

where the number of the states n equals to 10N +12 and the number of the control inputs

m is 4N, where N is the number of the UAVs.

6.5.2 Simulation Settings

Table 6.1: Slung-load system specification

Case 1 Case 2 Case 3
Quadrotor Number 1 2 4

Mass (kg) 0.408

Size (m) φ 0.356

Inertia (kg·m2) 2.2842·10-3 × 2.4451·10-3 × 4.4562·10-3

Thrust Coefficient (N) Kt = 8.1763 ·10−6, Kt,0 = 0.0562

Torque Coefficient (N·m) Kr = 2.1703 ·10−7, Kr,0 = 1.0950 ·10−4

Control Allocation Coefficient (rad/s) Kc = 0.7326, Kc,0 = 1.2694 ·102

Payload Nominal Mass (kg) 0.1 0.2 0.4

Size (m) 0.2 × 0.2 × 0.2 0.2 × 0.2 × 1.0 0.2 × 1.0 × 1.0

String Mass (kg) None

Size (m) 1.4

The numerical simulation is set with uncertainty in the mass of payload and nonlinear

dynamics on the quadrotor dynamics. The tracking performance and parameter estimation

of the proposed control synthesis method are evaluated in three slung-load systems: 1-,

2-, and 4-quadorotor systems.

The dynamic coefficients of the quadrotor, and the dimension of the payload and string

are specified in the Table 6.1. The strings are attached on the top surface of the payload,

and below each quadrotor with a distance of ||xV,ai||= 0.1 m from the centre of mass.

The actual mass of payload is considered as 120% of the nominal mass, i.e. ∆mL =
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0.2mL,nominal , creating the variation on the system matrix A as

∆A = U1 (IN×N⊗∆Ai)U2

∆Ai =−
∆mLg

N

 U3M−1
V,i U4

||xV,ai||I−1
V,i U4

 (6.32)

where the unit permutation matrices U’s are

U1 = [I5N×5N 05N×(5N+12)]
T

U2 = [05N×(5N+6) I5N×5N 05N×6]

U3 = [I2×2 02×1]

U4 =

I2×2 I2×2 02×1

01×2 01×2 0


(6.33)

The variation ∆A leads to the unmatched uncertainty as

N∗ =−UT
2

IN×N⊗
∆mLg

N
U3M−1

V,i U4


T

(6.34)

The nonlinear uncertainty is considered on the dynamics of a quadrotor as

W ∗ = IN×N⊗ [1 0 0 −0.8]

Φ(x) = [x2
3 x2

8 · · · x2
5(N−1)+3]

T
(6.35)

where x5(i−1)+3 is the roll rate of each quadrotor as defined in Eqn. (6.31).

The external reference command r(t) is applied on the position of each quadrotor with
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the change in every 10s as

r(t) = [xcmd,ycmd,zcmd]
T

=


1

1−h(t−10)−h(t−20)+h(t−30)

−h(t−10)


(6.36)

where h(t) is the unit step function.

The gains of PRLQG are designed as Q= 1 for the position and attitude states, Q= 0.5

for their derivatives, and R = 10 for the control inputs. The weight of PRLQG is chosen

as wPR = 10. The adaptation gains are set as Γ = 103 and σ = 10−5.

6.5.3 Simulation Results

The tracking error ||e(t)||2, parameter estimation error ||W̃ T (t)W̃ (t)||2, and thrust control

input of a quadrotor are shown in Fig. 6.2. The figures (a), (b), and (c) show the response

of the slung-load system with 1, 2, and 4 quadrotors, respectively.

The simulation is conducted with three different controls for the reference: the pro-

posed control synthesis method, the PRLQG method without adaptation, and the adaptive

control on the baseline controller with LQG gain. The three control schemes are applied

in all the scenario cases, but the diverging responses are not shown in the figure. Note

that only the responses of the proposed control remain stable and are able to be plotted on

all the cases. The PRLQG method diverges on the point t = 30 s in Case 1, and has rapid

oscillations in the quadrotor attitude with the strictly large tracking errors compared with

the control synthesis method. The adaptive control is stable when the number of quadro-

tor is large and the effect of the variation of the payload’s mass is smaller than the other

cases. Whereas the matched parameter is estimated similarly with the adaptive PRLQG,

the tracking error shows undesirable response for the presence of unmatched uncertain-

ties. The matched and unmatched uncertainties are successfully suppressed only by the

control synthesis among the three control schemes.
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(i) Case 1: Single quadrotor transportation system

(ii) Case 2: 2-quadrotor transportation system

(iii) Case 3: 4-quadrotor transportation system

Figure 6.2: Simulation results of tracking and parameter estimation error

The tracking error of the control synthesis is not only stable, but also shows similarities

with respect to different slung-load systems: the sudden increase of tracking error at the

signal excitation gradually diminishes as the parameter estimation converges, and the

scale of the peak error is bounded. This implies that the proposed control method can be

applied for the slung-load system with general number of UAVs.
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6.6 Conclusions

In this chapter, we proposed an control synthesis to effectively suppress the effect of un-

certainty of the multi-UAV slung-load system. The rationale behind the idea was that

although the slung-load system has considerable unmatched uncertainties which are nei-

ther estimated or controlled with common adaptive controls, the baseline controller can

be designed to be robust to the unmatched uncertainties through the PRLQG method.

The stability conditions of the proposed control method were obtained through Lyapunov

analysis. The numerical simulations demonstrate that the proposed adaptive PRLQG ap-

proach effectively cancels out the effect of both unmatched and matched uncertainties in

three different slung-load systems with a potential to be extended to incorporate more

UAVs.
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Chapter 7

Concurrent Learning Adaptive Control

with Directional Forgetting

Abstract

This chapter proposes a new concurrent learning based adaptive control algorithm. The

main objective behind our proposition is to relax the persistent excitation requirement for

the stability guarantee, while providing the ability to identify time-varying parameters.

To achieve the objective, this chapter designs a directional forgetting algorithm, which

is then integrated with the adaptive law. The theoretical stability analysis shows that the

tracking and parameter estimation error is exponentially stable with the signal only finitely

excited, not persistently excited. The analysis also shows that the proposed algorithm

can guarantee the stability under time-varying parameters. Moreover, the necessary and

sufficient conditions for the stability given the time-varying parameters are derived. The

results of numerical simulations confirm the validity of the theoretical analysis results and

demonstrate the performance of the proposed algorithm.

133
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7.1 Introduction

model reference adaptive control (MRAC) has been widely used for estimating the un-

certainty and canceling out its effect from the system to achieve the nominal designed

performance [106]. One of the main issues of the MRAC is that the persistence of excita-

tion (PE) is required for the parameter estimation to be converged. The PE corresponds to

the continuous change in the states, which is undesirable for the control performance as it

contradicts with obtaining the steady-state, and may contribute to the waste of energy.

There have been great efforts made to relax the PE requirement. Earlier studies on

the relaxation of the PE requirement for parameter convergence include the concurrent

learning (CL) based method [107, 108] and its modifications [109, 110, 111]. Concep-

tually, the PE condition is required since the adaptive law is rank-1 and thus the inputs

are required to be persistently excited in every direction to span the parameter estimation

error. The common principle to relax the dependence on PE in CL based methods is to use

the stored data containing information from the Finite Excitation (FE) in the past together

with the current data. In this way, the rank deficiency of an information matrix is expected

to be solved after sufficient accumulation of data, and this is the key of relaxation.

The issue with these methods is that the parameter convergence is difficult to be guar-

anteed if parameters are time varying. The information accumulated before a parameter

change contains only the information about the previous parameters. After the parameter

change, the information about the parameters changed starts to be accumulated. Roughly

speaking, since the information matrix contains both the previous parameters and those

changed, utilising this information matrix is difficult to guarantee the convergence to time-

varying parameters. Especially when the information about previous parameters is rich,

the convergence issue could be exacerbated. The CL based methods thus may not guar-

antee the stability of parameter estimation for the systems with time-varying parameters,

such as the control of strip temperature for heating furnaces, automation of the heavy duty

vehicles, and self-tuning cruise control [112, 113, 114].

Forgetting the previous information could address convergence issue under the time-
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varying parameters: various forgetting algorithms have been used in the online parameter

estimation [115] to cope with the time-varying parameters. Note that an adaptive control

architecture for uncertain dynamic system consists of two principal components: one is

the adaptive element in the control law and the other is the adaptation law. The adaptive

element in the control law is usually a function approximator to cancel out the effect

of uncertainty from the tracking error dynamics. The adaptation law is in principle a

regression algorithm working for better approximation of uncertainty. Therefore, it is

clear that the forgetting methods can be applied to the adaptation law and thus integrated

to CL methods.

Cho et al. [111] developed a composite MRAC algorithm to relax the PE requirement.

Based on the filtered regressor, they integrated the exponential forgetting method in the

composite MRAC. The potential issue is that their proposed algorithm requires PE condi-

tion for the forgetting algorithm. To avoid the PE requirement in the typical exponential

forgetting methods for the stability guarantee [116, 117], they applied the exponential

forgetting only when the minimum eigenvalue of the stacked data increases. However,

the forgetting is not working in the modified forgetting algorithm when the signal is not

persistently exited. Therefore, the PE condition is again crucial either for the convergence

of parameter estimation or for the forgetting of past information.

This chapter proposes a new CL adaptive control algorithm to relax the PE require-

ment and also to handle the convergence issue under time-varying parameters. The key

idea of the proposed adaptive control algorithm is to integrate directional forgetting to the

adaptation law. Note that the directional forgetting method [118, 119, 120] was intended

to avoid the estimator windup – zero eigenvalue of the information matrix – by forgetting

the old data only in the direction of new data. In this chapter, its objective is extended

to guarantee the stability of the both tracking and parameter estimation error. To achieve

this objective, we modify the directional forgetting proposed in [120] and apply it to the

adaptation law. As the modified directional forgetting accumulates the data and maintains

the stacked data, the PE condition can be directly relaxed. Moreover, since it discounts
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the information in the direction of new data, forgetting is always working on the non-

zero signals after FE. This could relax the PE condition for forgetting the past data and

consequently provide the convergence of time-varying parameters.

The characteristics of the new CL adaptive are analytically and empirically investi-

gated. The stacked data is first proven to be always lower bounded by a positive value and

thus full-rank. Then, this chapter shows that the past information is consistently forgotten

but maintains its ability to estimate parameter uncertainty without requiring the PE condi-

tion. The stability of tracking and parameter estimation under the presence of parameter

change is also theoretically analysed by assuming the discrete changes in parameters. The

stability conditions depend on the size of parameter change and forgetting rate, providing

the design trade-offs of forgetting rate. The numerical results on the wingrock dynamics

confirm the stability analysis results and demonstrate the effect of forgetting rate.

The rest of the chapter is organised as follows. In Section 7.2, mathematical prelim-

inaries with definitions and lemmas are given for later proofs. The control problem with

the parameterised uncertainty is formulated in Section 7.3. In Section 7.5, the adaptive

control with directional forgetting is suggested, and the bounds of the information and

the stability conditions are examined. The numerical simulations in Section 7.6 show the

performance of the proposed control and support the theoretic stability conditions. The

chapter is concluded in Section 7.7.

7.2 Preliminaries

The PE condition is crucial for the common MRAC methods and the parameter estimation

with exponential forgetting. This research intends to relax the PE condition to FE which

requires exciting signals only for a finite time interval. The PE and FE conditions are

defined as in [121].

Definition 3 (Persistence of Excitation (PE)). A bounded vector signal q(t) is persistently
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exciting if there exist T > 0 and γ > 0 such that

∫ t+T

t
q(τ)q(τ)T dτ ≥ γI, ∀t ≥ t0 (7.1)

Definition 4 (Finite Excitation (FE)). A bounded vector signal q(t) is finitely exciting

over a time set [ts, ts +T ] if there exist ts ≥ t0, T > 0 and γ > 0 such that

∫ ts+T

ts
q(τ)q(τ)T dτ ≥ γI (7.2)

The following Lemmas utilise the characteristics of spectral radius, determinant, and

trace to obtain the bound of a matrix. These Lemmas are used in Theorem 8 and 9 to

prove the lower and upper bounds of the information.

Lemma 4. For a Hermitian positive semi-definite matrix A ∈ Rn×n, A ≤ I if and only if

ρ(A) ≤ 1, where the spectral radius ρ(·) is defined as the largest absolute value of the

eigenvalues of a matrix.

Proof. Refer to Appendix A and Theorem 7.7.3 in [122].

Lemma 5. For any square matrix A ∈ Rn×n,

det(exp(A)) = exp(tr(A)) (7.3)

Proof. Refer to Appendix A and Section 8.3 in [123].

Lemma 6. If a matrix A ∈ Rn×n is positive-definite,

det(A)≤

tr(A)

n


n

(7.4)
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7.3 Problem Formulation

Consider a state-space representation as:

ẋ(t) = Ax(t)+B(u(t)+∆(t)), (7.5)

where x(t) ∈ Rn, u(t) ∈ Rm, and ∆(t) ∈ Rm stand for state, input, and uncertainty vector,

respectively. The system matrices A ∈ Rn×n and B ∈ Rn×m are assumed to be constant

and controllable.

The uncertainty ∆(t) is assumed to be linearly parametrised as:

∆(t) =W ∗T (t)Φ(x(t)), (7.6)

where W ∗(t)∈Rp×m is the unknown true parameter matrix, and Φ(x(t))∈Rp is the basis

vector.

7.4 Control Design

The controller is designed in two parts as:

u(t) = ubase(t)−uad(t) (7.7)

where the baseline control ubase(t) determines the nominal performance of the control and

the adaptive control uad(t) alleviates the effect of uncertainty.

7.4.1 Baseline Controller

The baseline controller is designed as ubase(t) =−Kx(t)+Krr(t) such that the system is

stable and tracks the reference input r(t) ∈ Rm. The reference model, the model without
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any parameter uncertainty, is obtainted as

ẋr = Arxr(t)+Brr(t) (7.8)

where xr(t)∈Rn is the reference state. The input matrix of the reference model is defined

with respect to the reference input matrix Kr ∈ Rm×m as Br = BKr. The control gain

K ∈ Rm×n is determined such that the system matrix of the reference model, Ar = A−

BK, is Hurwitz stable. Then, there exists a positive definite symmetric matrix P ∈ Rn×n

satisfying the following Lyapunov equation:

AT
r P+PAr = Q (7.9)

Defining the tracking error as e(t) = xr(t)− x(t), the tracking error dynamics is given

by

ė(t) = Are(t)+Bε(t) (7.10)

where ε(t), uad(t)−∆(t) is the adaptation error.

Assuming that the uncertainty lies in the span of the input matrix B, the uncertainty is

accessed as:

∆(t) = B+(ė(t)−Are(t))+uad(t), (7.11)

where B+ is a pseudoinverse of B.

Note that the derivative of the tracking error, ė(t) in Eqn. (7.11), cannot be perfectly

known and should be approximated. To alleviate this issue, various filters, such as fixed-

point smoother [109] and a low-pass filter [111], can be used. Using one of the filters,

the filtered vector of ∆(t) is obtained and denoted as c(t). For instance, using a low-pass
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filter, the Laplace transform of Eqn. (7.11) is expressed in the s-domain as:

c(s), ∆ f (s) =
1

τs+1
·
(
B+(sI−Ar)e(s)+uad(s)

)
= B+

(
1
τ

e(s)−
(

1
τ

I +Ar

)
e f (s)

)
+uad, f (s)

(7.12)

where τ is the time-constant of a low-pass filter 1/(τs+1), and the subscript f denotes for

the filtered vectors. The inverse Laplace transform yields in the filtered system dynamics

in the t-domain as:

c(t), ξ (t)− 1
τ

B+e(t) =W ∗T q(t)

ξ̇ (t) =
1
τ

(
−B+

(
1
τ

I +Ar

)
e(t)+uad(t)−ξ (t)

) (7.13)

where q(t) denotes the filtered vector of Φ(x(t)), and ξ (t) is an auxiliary variable to

compute c(t).

7.4.2 Adaptive Law

The adaptive control is designed to cancel out the effect of uncertainty from the tracking

error dynamics in Eqn. (7.8) by estimating the parameter as

uad(t) = Ŵ T (t)Φ(x(t)) (7.14)

Here, the estimated parameter vector Ŵ (t) ∈ Rl×m is determined by an adaptive law.

The adaptive law used in this research is the summation of gradient descent method and

the information-based parameter estimation as:

˙̂W (t) = Γ

Φ(x)eT (t)PB︸ ︷︷ ︸
gradient descent

−γb(Ω(t)Ŵ (t)−M(t))︸ ︷︷ ︸
information architecture

 (7.15)

where Γ ∈ Rp×p, and γb ∈ Rp×p are the adaptive gains for gradient descent and informa-

tion architecture, respectively. Also, Ω(t) ∈ Rp×p, and M(t) ∈ Rp×p are the information
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matrix and auxiliary matrix, respectively.

The information matrix is the accumulation of measured basis vectors, and the auxil-

iary matrix is that of the filtered uncertainty. Once the FE condition is satisfied, both the

information and auxiliary matrices are forgotten with the directional forgetting method.

The dynamics of the accumulation and forgetting method is expressed as

Ω̇(t) =


q(t)qT (t) if rank(Ω(t))< rank(Ω(t)+q(t)qT (t))

− k
Ω(t)q(t)qT (t)

qT (t)Ω(t)q(t)
Ω(t)+q(t)qT (t) otherwise

Ṁ(t) =


q(t)cT (t) if rank(Ω(t))< rank(Ω(t)+q(t)qT (t))

− k
Ω(t)q(t)qT (t)

qT (t)Ω(t)q(t)
M(t)+q(t)cT (t) otherwise

(7.16)

where k ∈ R is a positive constant.

7.5 Lyapunov Stability Analysis

7.5.1 Lower and Upper Bounds of the Information Matrix

The value of the information matrix is directly related to the convergence rate of the

parameter estimation as in Eqn. (6.15), and thus the bounds of the information matrix

are inferred to be crucial for proving the stability of parameter estimation and for finding

the convergence rate. The following theorems give the lower and upper bounds of the

information matrix.

Theorem 8 (Lower bound of the information matrix). If there exist a constant γ > 0 and

t1 > t0 such that

Ω(t1)≥ γI, (7.17)
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there exists a constant α > 0 such that

Ω(t)≥ αI, ∀t ≥ t1 (7.18)

Proof. Let the subspace which is excited by q(t) as φ with its dimension m, and the

unexcited subspace as φ⊥. The information matrix can be decomposed as

Ω(t) = Ωo(t)+Ωp(t), Ωo(t)q(t) = 0 (7.19)

where each part Ωo(t) and Ωp(t) satisfies the following equations:

Ω̇o(t) = 0

Ω̇p(t) =−k
Ωp(t)q(t)qT (t)

qT (t)Ωp(t)q(t)
Ωp(t)+q(t)qT (t)

(7.20)

Defining an orthogonal matrix U = [U1 U2] where the columns of U1 ∈Rn×m are the

orthogonal basis for φ and those of U2 ∈ Rn×(n−m) are the orthogonal basis for φ⊥, the

following equation is obtained.

UT
Ω̇(t)U ≥


−kUT

1

Ωp(t)q(t)qT (t)

qT (t)Ωp(t)q(t)
U1

UT
1 Ωp(t)U1 +UT

1 q(t)qT (t)U1 0

0 0

 (7.21)

Here, the forgetting part, UT
1 Ωp(t)U1 is structured as

UT
1 Ωp(t)U1 = Ψ(t, t1)UT

1 Ωp(t1)U1 +
∫ t

t1
Ψ(t,τ)UT

1 q(τ)qT (τ)U1dτ (7.22)

where Ψ(t, t1) ∈ Rl×l is the transition matrix from time t1 to t. The lower bound of the
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transition matrix is obtained using Lemma 4 as

Ψ(t, t1) = exp

−k
∫ t

t1
UT

1

Ωp(τ)q(τ)qT (τ)

qT (τ)Ωp(τ)q(τ)
U1dτ

≥ e−k(t−t1)I (7.23)

As a matrix UT
1 q(τ)qT (τ)U1 > 0 acts as the persistent excitation, there exists a con-

stant α > 0 such that

UT
1 Ωp(t)U1 ≥ e−k(t−t1)UT

1 Ωp(t1)U1 +αI (7.24)

The non-forgetting part, UT
2 Ωo(t)U2, is obtained as

UT
2 Ωo(t)U2 =UT

2 Ωo(t1)U2 (7.25)

Assuming Ω(t1)≥ γI, the solution of the equation (7.21) is thus lower-bounded as

UT
Ω(t)U ≥min(γe−k(t−t1)+α,γ)I (7.26)

As the matrix U is an orthogonal matrix and the positive value α can be chosen to be

γ , the lower bound of the information matrix is obtained as

Ω(t)≥ αI (7.27)

Theorem 9 (Upper bound of the information matrix). If there exist a constant γ > 0 and

t1 > t0 such that

Ω(t1)≥ γI, (7.28)

and the signal is bounded, i.e. |q(t)|< c, there exists a constant β > 0 such that

Ω(t)≤ β I, ∀t > t1 (7.29)
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Proof. The forgetting dynamics of the information matrix results in

Ω(t) = Ψ(t, t1)Ω(t1)+
∫ t

t1
Ψ(t,τ)q(τ)qT (τ)dτ (7.30)

where the transition matrix is defined as

Ψ(t, t1) = exp

−k
∫ t

t1

Ω(τ)q(τ)qT (τ)

qT (τ)Ω(τ)q(τ)
dτ

 (7.31)

Using Lemma 5, the determinant of the information matrix is computed as

det(Ω(t)) = exp−k(t−t1) det(Ω(t1))+
∫ t

t1
exp−k(t−τ) det(q(τ)qT (τ))dτ (7.32)

If the signal is bounded, i.e. |q(t)|< c, the determinant of the matrix q(τ)qT (τ) is also

bounded by Lemma 6.

det(q(τ)qT (τ))≤

qT (τ)q(τ)

p


p

≤

c2

l


p

,C (7.33)

Therefore, the determinant of the information matrix is upper-bounded as

det(Ω(t))≤ exp−k(t−t1) det(Ω(t1))+
C

k

(
1− exp−k(t−t1)

)
(7.34)

As the information matrix is positive definite by Theorem 8, the upper bound of the

information matrix is obtained with a constant β > 0 as

Ω(t)≤ β I (7.35)
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7.5.2 Stability Analysis

Using that the information matrix is lower-bounded to be positive definite even without

the persistent excitation, the tracking error and the parameter estimation error can be

proved to be stable by the following theorem.

Theorem 10 (Stability in (e,W̃ )). If there exists t1 > t0 such that

Ω(t1)≥ γI, (7.36)

the tracking error e and the parameter estimation error W̃ are globally uniformly expo-

nentially stable for t > t1.

Proof. The explicit forms of the information matrix and the auxiliary matrix are expressed

as


Ω(t) = Ψ(t, t0)Ω(t0)+

∫ t
t0 Ψ(t,τ)q(τ)qT (τ)dτ

M(t) = Ψ(t, t0)M(t0)+
∫ t

t0 Ψ(t,τ)q(τ)cT (τ)dτ

(7.37)

Assuming that the initial values of the information and auxiliary matrix are zero, the

following equation is obtained:

Ω(t)Ŵ (t)−M(t) = Ω(t)W̃ (t) (7.38)

The Lyapunov function is defined as

V (e,W̃ ) =
1

2
eT (t)Pe(t)+

1

2
tr(W̃ T (t)Γ−1W̃ (t)), (7.39)

where W̃ (t) , Ŵ (t)−W ∗(t) is the parameter estimation error. Defining an augmented

vector ξ (t), [eT (t),W̃ T (t)], the upper bound of the Lyapunov function is given as

V (e,W̃ )≤
1

2
max(λ (P),λ (Γ−1))||ξ (t)||2 (7.40)
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where λ (·) is a set of eigenvalues of a matrix.

Substituting the tracking dynamics in Eqn. (7.10) and the adaptive law in Eqn. (7.15)

to the derivative of Eqn. (7.39), the derivative of the Lyapunov function is obtained as

V̇ (e,W̃ ) =−
1

2
eT (t)Qe(t)− tr(W̃ T (t)γbΩ(t)W̃ (t)) (7.41)

From the Theorem 8, the information matrix is lower bounded, and thus the derivative

of the Lyapunov function is upper bounded as

V̇ (e,W̃ )≤−
1

2
min(λ (Q),α)||ξ ||2 (7.42)

Using the upper bound of the Lyapunov function in Eqn. (7.40),

V̇ (e,W̃ )≤−
min(λ (Q),α)

max(λ (P),λ (Γ−1))
V (e,W̃ ) (7.43)

As V (e,W̃ )> 0 for all (e,W̃ ) except the origin, and the lower bound of the information

matrix is positive, i.e. α > 0, by Theorem 8, (e,W̃ ) are globally uniformly exponentially

stable.

The main objective of the forgetting algorithms is to cope with the parameter changes.

Assume the parameter change with the size of ∆W ∗i at t = ti as

W ∗(t) =W ∗0 +∑
i

∆W ∗i h(t− ti) (7.44)

where h(t) is the step function.

The sufficient and necessary stability condition under the presence of parameter change

is derived in the following theorem.

Theorem 11 (Stability in (e,W̃ ) with parameter changes). The tracking error e and the
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parameter estimation error W̃ are Lyapunov stable for t ∈ [ti ti+1] if and only if

f (e,W̃ )≥ 0, Ω(ti)> γI (7.45)

where the function f (e,W̃ ) is defined as

f (e,W̃ ) =
1

2
eT (t)Qe(t)I +Ω(t)W̃ (t)W̃ T (t)+

i

∑
j=1

Ψ(t, t j)Ω(t j)∆W ∗j W̃ T (t) (7.46)

and the transition matrix Ψ(t, t j) is

Ψ(t, t j) = exp

−k
∫ t

t j

Ω(τ)q(τ)qT (τ)

qT (τ)Ω(τ)q(τ)
dτ

 (7.47)

Proof. For the time span t ∈ [ti ti+1], the information matrix and the auxiliary matrix are

expressed as


Ω(t) = Ψ(t, ti)Ω(ti)+

∫ t
ti Ψ(t,τ)q(τ)qT (τ)dτ

M(t) = Ψ(t, ti)M(ti)+
∫ t

ti Ψ(t,τ)q(τ)cT (τ)dτ

(7.48)

As the values of both information and auxiliary matrices are continuous at the param-

eter jumps, the following equation is satisfied.

Ω(t)Ŵ (t)−M(t) = Ω(t)W̃ (t)+
i

∑
j=1

Ψ(t, t j)Ω(t j)∆W ∗j (7.49)

Substituting the equation into the same Lyapunov function as the equation (7.39), the

derivative of the Lyapunov function is computed as

V̇ (e,W̃ ) =−
1

2
eT (t)Qe(t)− tr(W̃ T (t)γbΩ(t)W̃ (t))

−
i

∑
j=1

tr(W̃ T (t)γbΨ(t, t j)Ω(t j)∆W ∗j )

(7.50)
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The necessary and sufficient condition for V̇ (e,W̃ )≤ 0 for all (e,W̃ ) except the origin

is

1

2
eT (t)Qe(t)I +Ω(t)W̃ (t)W̃ T (t)+

i

∑
j=1

Ψ(t, t j)Ω(t j)∆W ∗j W̃ T (t)≥ 0 (7.51)

In the Theorem 11, the sufficient and necessary condition f (e,W̃ ) is not deterministic

as the transition matrix Ψ(t, t j) for the time-varying system is almost impossible to ob-

tain. Instead, the following theorem separates the sufficient condition f1(e,W̃ ) and the

necessary condition f2(e,W̃ ), of which the bounds are conservative, but can be computed

deterministically.

Theorem 12.

1. The tracking error e and the parameter estimation error W̃ are exponentially stable

if ∆W ∗j W̃ T (t j)≥ 0 for all t j.

2. The tracking error e and the parameter estimation error W̃ are Lyapunov stable if

f1(e,W̃ )≥ 0 for t ∈ [ti, ti+1], where the function f1(e,W̃ ) is defined as

f1(e,W̃ ) =
1

2
eT (t)Qe(t)I +αW̃ (t)W̃ T (t)+β

i

∑
j=1

∆W ∗j W̃ T (t) (7.52)

3. The tracking error e and the parameter estimation error W̃ are Lyapunov stable,

f2(e,W̃ )≥ 0 for t ∈ [ti, ti+1], where the function f2(e,W̃ ) is defined as

f2(e,W̃ ) =
1

2
eT (t)Qe(t)I +βW̃ (t)W̃ T (t)+α

i

∑
j=1

e−k(t−t j)∆W ∗j W̃ T (t) (7.53)
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Proof.

1. If ∆W ∗j W̃ T (t) ≥ 0, the derivative of the Lyapunov function under the presence of

parameter change in the equation (7.50) is less than or equal to that without the

parameter change in the equation (7.41). Converging faster than the exponentially

stable case, (e,W̃ ) is also exponentially stable.

2. If ∆W ∗j W̃ T (t)< 0, from the bounds of the information matrix and the upper bound

of the transition matrix as

αI ≤Ω(t)≤ β I, Ψ(t, t j)≤ I, (7.54)

the following inequality is satisfied.

f1(e,W̃ )≤ f (e,W̃ ) (7.55)

It follows that if f1(e,W̃ ) is positive semi-definite, the stability condition in Theo-

rem 11 is satisfied, i.e. f (e,W̃ )≥ 0. If ∆W ∗j W̃ T (t)≥ 0, f1(e,W̃ ) is always positive

semi-definite and from the first statement of Theorem 12, the Lyapunov stability

is guaranteed. Therefore, f1(e,W̃ )≥ 0 is the sufficient condition for the Lyapunov

stability of (e,W̃ ).

3. If ∆W ∗j W̃ T (t)< 0, from the bounds of the information matrix and the lower bound

of the transition matrix in Eqn. (7.23), the following equation is satisfied.

f (e,W̃ )≤ f2(e,W̃ ) (7.56)

If the stability condition in Theorem 11 is satisfied, the function f2(e,W̃ ) is positive

semi-definite. If ∆W ∗j W̃ T (t) ≥ 0, f2(e,W̃ ) is always positive semi-definite and is

satisfied regardless of the stability of (e,W̃ ). Therefore, f2(e,W̃ ) ≥ 0 is the neces-

sary condition for the Lyapunov stability of (e,W̃ ).
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Summarising the Theorem 8, 10, and 12, the effect of the parameter change ∆W ∗i and

the forgetting factor k is interpreted in the following remark.

Remark 3.

1. The parameter change ∆W ∗i in the direction of making ∆W ∗j W̃ (t)T ≥ 0 does not

effect on the stability condition.

2. If the parameter change ∆W ∗i lies in the direction of ∆W ∗j W̃ T (t) < 0, increase in

the size of ∆W ∗i reduces both f1(e,W̃ ) and f2(e,W̃ ), narrowing down both the nec-

essary and sufficient stability condition.

3. When ∆W ∗j W̃ T (t) < 0, large forgetting factor k increases f2(e,W̃ ), enlarging the

region for satisfying the necessary condtion.

4. Large forgetting factor k results in smaller lower bound of the information matrix,

reducing the convergence rate of parameter estimation.

The value of the forgetting factor k needs to be chosen accordingly, considering the

expected change of parameter, its effect on the stability conditions, and the desired con-

vergence rate.

7.6 Numerical Simulations

7.6.1 Simulation Settings

The wing rock roll dynamics, a common application example of adaptive control for its

nonlinearity, is considered. The dynamics is modelled as in [124].

φ̇ = p

ṗ = I−1
xx

1

2
ρU2

∞Sb(Cl +Clδa
δa) = ∆(x)+Lδaδa,

(7.57)
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where φ and p are the roll angle and its rate, and δa and Clδa
are the aileron deflection and

its nondimensional effectiveness.

Defining the state vector as x = [φ p]T , the basis vector and the time-varying param-

eter are modelled as:

Φ(x) = [1,φ , p, |φ |p, |p|,φ 3]T

W ∗0 = [.8, .2314, .6918,−.0624, .0095, .0215]T

∆W ∗1 = [.8,−.5 · .2314,−.9 · .6918,

−9 · .0624,2 · .0095,−.3 · .0215]T

t1 = 50s

(7.58)

The reference input is given as:

r(t) = g(t,15)+g(t,55)+g(t,75)

+g(t,95)+g(t,115)+g(t,135)
(7.59)

where the split square function g(t, ti) is defined as:

g(t, ti) =


4 for ti < t ≤ ti +2

0 for ti +2 < t ≤ ti +10

−4 for ti +10 < t ≤ ti +12

(7.60)

For the reference, the performance of the proposed adaptive control with the direc-

tional forgetting (DF) is compared with that of the integral based concurrent learning

(CL) algorithm without forgetting algorithm and the exponential forgetting (EF).

Without any forgetting, the CL method results in infinitely large information matrix,

and thus requires an stack-manager algorithm. The stack-manager algorithm used in this
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research is given as:

Ω(t +∆t)

=


q(t)qT (t), if rank(Ω(t))<rank(Ω(t)+q(t)qT (t))

or ||Φ(z(t))−Φlast ||/||Φ(z(t))||≥tol

Ω(t), otherwise

M(t +∆t)

=


q(t)cT (t), if rank(Ω(t))<rank(Ω(t)+q(t)qT (t))

or ||Φ(z(t))−Φlast ||/||Φ(z(t))||≥tol

M(t), otherwise

(7.61)

The EF method is a forgetting method in uniform directions. The discrete dynamics

of the EF method is given as:

Ω(t +∆t)

=


q(t)qT (t), if rank(Ω(t))< rank(Ω(t)+q(t)qT (t))

µΩ(t)+q(t)qT (t), otherwise

M(t +∆t)

=


q(t)cT (t), if rank(Ω(t))< rank(Ω(t)+q(t)qT (t))

µM(t)+q(t)cT (t), otherwise

(7.62)
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Likewise, the discrete dynamics of the DF method is

Ω(t +∆t)

=


q(t)qT (t), if rank(Ω(t))< rank(Ω(t)+q(t)qT (t))

µ

Ω(t)q(t)qT (t)

qT (t)Ω(t)q(t)
Ω(t)+q(t)qT (t), otherwise

M(t +∆t)

=


q(t)cT (t), if rank(Ω(t))< rank(Ω(t)+q(t)qT (t))

µ

Ω(t)q(t)qT (t)

qT (t)Ω(t)q(t)
M(t)+q(t)cT (t), otherwise

(7.63)

where the forgetting factor 0 < µ ≤ 1 corresponds to e−k of the continuous dynamics.

Considering that µ is usually selected between 0.95 – 0.99 and the forgetting of the EF

is much faster than the DF, the value of µ is chosen differently on EF and DF for similar

performance.

µ =


0.99 for EF

0.95 for DF
(7.64)

(i) Minimum eigenvalue of Ω(t) (ii) Lyapunov function V (t)

Figure 7.1: Simulation results without parameter jump or excitation after 50s
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(i) Minimum eigenvalue of Ω(t) (ii) Lyapunov function V (t)

Figure 7.2: Simulation results with parameter jump at 50s

(i) Minimum eigenvalue of Ω(t) (ii) Lyapunov function V (t)

(iii) Necessary condition for stability F2(e,W̃ )

Figure 7.3: Simulation results with parameter jump at 50s and different forgetting rates
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7.6.2 Simulation Results

First, assume there is no parameter change or reference inputs after 50s. The lower bound

of the information matrix, i.e. the minimum singular value, and the Lyapunov function are

shown in Fig. 7.1. The information matrix of DF is lower bounded, and both the tracking

and parameter estimation error converge to zero without PE, while the information matrix

of EF converges to zero resulting in the stagnation of the parameter estimation. The result

clearly supports the Theorem 8 and 10.

If there is a parameter jump at 50s, the lower bound of the information matrix and the

Lyapunov function are shown in Fig. 7.2. The information matrix of DF is lower bounded

with a non-zero value as proven in Theorem 8, and upper bounded to a finite value as in

Theorem 9. While the parameter error increases in CL, both forgetting algorithms show

Lyapunov stability.

The result of the same simulation with different µ’s is shown in Fig. 7.3, where the

necessary condition for stability F2(e,W̃ ) is given from Theorem 12. As the lower and

upper bounds of the information matrix are not determined, worst-case values for reducing

the F2(e,W̃ ), i.e. α = β , are chosen. The Lyapunov function is stable, and the necessary

condition is met with positive semi-definiteness. Increase in k, or alternatively decrease

in µ , results in large F2(e,W̃ ) in the first part as the positive terms decay fast. In the later

part, the parameter estimation is stagnated as the information matrix is lower bounded by

a smaller value, which mainly determines the convergence rate

7.7 Conclusions

In this chapter, a directional forgetting based concurrent learning adaptive control has

been proposed. The theoretical studies have shown that the information matrix is bounded,

and both the tracking and parameter error converges to zero without the PE requirement

under the assumption that there is no parameter change. The conditions for the conver-

gence with the existence of parameter jumps have been obtained. The theoretical studies
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are supported by the numerical simulations on wingrock model. The proposed method is

expected to be applicable to many adaptive control problems with time-varying parame-

ters for its simplicity and convergence guarantee.
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Chapter 8

General Discussion

In this chapter, the proposed analysis and control design frameworks in Chapters 2 to

7 are discussed with respect to two main application examples: formation control and

slung-load system. Both of the application examples are the networked control system, to

which the extended analysis from Chapter 4 is applicable.

8.1 Formation Control

Formation control is a typical example of multi-UAV system without physical intercon-

nections between them. The UAVs are controlled to track the reference trajectory while

maintaining the spatial distance. Different UAV dynamics and network topology are con-

sidered to show how the proposed analysis framework can be applied and the network

parameters influence on robustness and performance of the networked control system.

Assuming that the dynamics of the UAVs are identical, the analysis and numerical simu-

lation results of the case studies in Chapter 4 are directly applicable. The proposed control

methods in Chapters 5 to 7 are not considered in this application, as there are not specific

structured uncertainties on the unmatched or time-varying parameters.

Consider a formation control problem where the distance between UAVs is controlled

with a P-gain control, i.e. K(s) = kL. Approximating the UAV dynamics and captur-

ing only the dominant characteristics, individual UAV’s dynamics can be modelled as

159
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(ii) Stability margin with different λi/λr
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(iii) Stability margin with different ai
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(iv) Stability margin with different b

Figure 8.1: Stability margin with different network topologies & system dynamics

GI(s) = bk/∏
ni
i=0(s+ ai). Since the UAVs are not physically interconnected, the open-

loop transfer function of the networked control system is obtained as:

G∗OL =
bkL◦H(s)

∏
ni
i=0(s+ai)

. (8.1)

Then, the main results of the robustness analysis are revisited in Fig. 8.1. The effect

of network topology and agent dynamics on the control robustness of a whole network

can be summarised as:

• Effect of network topology: From (i) and (ii), the increase of |λL| and λi/λr dete-

riorates the stability margin. It is known that |λL| is relevant with the connectivity

of a graph, and λi/λr with the cyclic network. Also, even though it is not directly

considered in the analysis, increase in the accessing delay has a similar effect on
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increasing λi as a cyclic network, deteriorating the stability margin.

• Effect of agent dynamics: From (iii) and (iv), the increase of ai’s and decrease of

b or k improves the stability margin. The conclusion coincides with physical intu-

ition: dependence more on the agent’s own states than on the others’ is beneficial

for the stability margin.

With the analysis results on the performance, there is a trade-off between the robust-

ness and performance metrics. The effect of cyclic network or accessing delay is obscure

in the performance metric, but the network connectivity and agent dynamics has a con-

flicting effect on the networked control system. When the connectivity of a graph is

increased, the robustness is degraded while the performance is improved. Also, the in-

crease of ai’s compared with b or k implies that the agents are more dependent on their

own states, increasing the robustness and losing the tracking performance of the whole

system. Therefore, the network or control gain should be designed not to achieve both the

robustness and performance, but to find a balance between them.

Note that in the formation control, the stability may refer to the convergence of UAV

positions to the reference formation in other literature. In this thesis, the stability is de-

fined as the convergence of the UAV’s states to the equilibrium point, and the robustness

is the maximum gain and phase variations of the uncertainties that do not lead to the loss

of stability. Hence the notion of the stability with respect to the reference input is similar

to the performance metrics in this paper. For the main objective of the formation control

lies in the tracking of the formation, the network and control gain would be designed with

more emphasis on the performance.

8.2 Slung-Load System

The slung-load transportation system is a challenging application for its physical cou-

pling between the UAVs. The strings connected to the payload, and the movements of
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the payload is affected by those of the UAVs and vice versa. For the analysis, the charac-

teristic equation is not expressed explicitly as Eqn. (4.10), and consequently the margins

are obtained only numerically. For the control design, the control techniques proposed

in Chapters 5 to 7 are applied to cope with the uncertainties and recover the nominal

controller response.

The robustness analysis results with respect to different network topologies are shown

in Fig. 8.2 and Fig. 8.3. The x-axes are the second largest eigenvalue of L and the largest

one of A respectively, both of which are positive real number. These eigenvalues corre-

spond to the effect of |λL| and τi j, respectively. The y-axes are gain margin obtained from

the disk margin, meaning that the phase margin is also increased with the increase of gain

margin.
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(ii) Stability margin with PRLQR

Figure 8.2: Stability margin with different full-state feedback control techniques

In Fig. 8.2, the margins are analysed with full-state feedback controllers, the LQR

controller and the parameter-robust LQR. A notable effect of the network topology on the

stability margin is that the more the network is connected, the stability margin decreases.

The tendency is the same as the discussions on the formation control, where the agent

dynamics is not coupled with each other. However, the difference lies on that the tendency

depends on the number of vehicles. The larger the number of vehicles, the more sensitive

the stability of the system to the uncertainties or disturbances. Once the network is fully

spanned, increase of connectivity leads to the decrease of multi-hop delay τi j, and thus to
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the increase of stability. Comparing the LQR technique with the parameter-robust LQR,

the overall scale of the gain margin is increased with parameter-robust technique. Note

that the PRLQG method is suggested to improve the robustness of the observer-based

controller, not the full-state feedback control.
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Figure 8.3: Stability margin with different observer-based control techniques

In Fig. 8.3, the margins are analysed with respect to the LQG and PRLQG method,

where only the positions of the vehicles are observed. When it comes to observer-based

control, it is difficult to find the distinct relationship between the stability margin and the

network topology. While obtaining the disk margin, the value of α(ω) is sensitive to the

variation of the frequency ω . The resultant stability margin, α∗ is therefore also sen-

sitive, showing an irregular pattern with respect to the network topology. However, the

overall scale of the gain margin is increased around 1.1 dB, using the PRLQG method.
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Comparing with the formation control, the physical interconnections between the vehi-

cles deteriorate the system robustness in a significant degree, but the proposed control

technique recovers the stability margin.

Note that the robustness analysis only covers the linear dynamics and controller. Con-

sidering the nonlinear part, the numerical simulations in Chapter 6 suggest that the adap-

tive terms play a crucial role in stabilising the tracking and parameter estimation error,

but the analysis of its robustness is illusive. Although the main objective of the proposed

adaptive control methods is not to improve the general stability margin but to cancel out

the structured uncertainties, the analysis of its robustness as a future work could improve

the quality of the research.



Chapter 9

Conclusions and Future Work

9.1 Conclusions

In this thesis, a systematic approach to analyse and design the networked control system

with multiple UAVs has been proposed. The approach includes analysis method of a

simple network and networked control system, adaptive control design concerning the

potential issues, and application examples to validate the approach. The conclusions of

each objectives can be summarised as follows:

• Analysis on networked system The design of scale free core-periphery networks

is formulated into a single parameter problem, and the network properties are opti-

mised using the evolutionary game based MOO method. Numerical simulation is

conducted with different average degrees, which are relevant to the size of network

by the transmission power or coverage. The parameter of the network structure is

given by the optimal exponent of the degree distribution. This part is expected to

suggest a guide for designing a topology in the various fields including multi-agent

or sensor network design.

• Analysis on networked control system A new stability analysis method for the

networked multi-agent system has been proposed. The main idea is to model

the networked system including the communication dynamics into a single MIMO
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transfer function and to utilise the analysis tools in linear control theory. The sta-

bility of the networked system is defined, and its robustness against gain/phase

variation and accessing delay is evaluated with stability and delay margin. The

strength of the proposed analysis method lies on that it can analyse any agent dy-

namics, controllers, and communication characteristics, if they could be modelled

into a transfer function. By combining network and control theory, the properties

of a graph have been explained in the view of controlling the agents. This research

will provide an insight for designing the network or control considering their effects

on the robustness and performance of the networked system.

• Adaptive control design for unmatched uncertainties An control synthesis to

effectively suppress the effect of uncertainty of the multi-UAV slung-load system

is proposed. The rationale behind the idea is that although the slung-load system

has considerable unmatched uncertainties which are neither estimated or controlled

with common adaptive controls, the baseline controller can be designed to be robust

to the unmatched uncertainties through the PRLQG method. The stability condi-

tions of the proposed control method are obtained through Lyapunov analysis.

• Adaptive control design for time-varying uncertainties A directional forgetting

based concurrent learning adaptive control has been proposed. The theoretical stud-

ies have shown that the information matrix is bounded, and both the tracking and

parameter error converges to zero without the PE requirement under the assumption

that there is no parameter change. The conditions for the convergence with the ex-

istence of parameter jumps have been obtained. The proposed method is expected

to be applicable to many adaptive control problems with time-varying parameters

for its simplicity and convergence guarantee.

• Application Two application examples are chosen to validate the analysis frame-

work and the proposed control: formation control and slung-load system. For for-

mation control, considering the dominant agent dynamics reveals the effect of net-
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work topology and agent dynamics on the robustness metrics defined. Also, the

trade-off between the robustness and performance of the networked system is ob-

served, suggesting the network topology and control gain to be designed in consid-

eration of their balance. Numerical simulations with first- and second-order systems

support the theoretical analysis.

For slung-load system, the stability and its robustness is also analysed with nu-

merical support. The numerical simulations demonstrate that the proposed control

approach effectively cancels out the effect of both unmatched and matched un-

certainties in three different slung-load systems with a potential to be extended to

incorporate more UAVs.

9.2 Future work

There are several points that must be followed to support and develop this research in the

future.

• Nonlinear analysis in slung-load system. The effect of communication between

the agents has been analysed for the linearised dynamics and control only, and

the nonlinear part has been dealt with in the numerical simulation. A systematic

scheme for analysing the robustness and performance of the nonlinear system would

improve the research.

• Effect of data rate. Although the analysis framework has been proposed to con-

sider general communication dynamics, the effect of delay has been mainly dis-

cussed in this research. Another important aspect of the communication network is

the data rate. The amount of data transferred between the agents can be modelled

as an information theory, and using the information theory, the stability bounds for

the system could be obtained [125].
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Appendix A

Proofs on Lemmas

Proof of Lemma 4

For a positive semi-definite matrix A ∈ Rn×n, the maximum eigenvalue is the same as the

spectral radius, which is expressed as the following equation:

ρ(A) = λmax = max
x 6=0

xT Ax

xT x
(A.1)

For any non-zero vector x ∈ Rn, the following inequality is hold.

xT (A−ρ(A)I)x = xT Ax−ρ(A)xT x≥ 0 (A.2)

Thus, the matrix (A−ρ(A)I) being positive semi-definite, the following equation is

satisfied.

A≤ ρ(A)I (A.3)

The inequality A≤ I is satisfied if and only if ρ(A)≤ 1.
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Proof of Lemma 5

Determinant of a matrix F is expressed as the summation of cofactors and its correspond-

ing vectors as

det(F) =
m

∑
i=1

ci j fi j (A.4)

where ci j is the cofactor and F = ( fi j). As the cofactors and the corresponding vectors

are independent, the partial differential is obtained as

∂ det(F)

∂ fi j
= ci j (A.5)

The differential of the determinant is thus obtained as follows:

d det(F) =
m

∑
i=1

m

∑
j=1

ci jd fi j = trF]dF (A.6)

where F] is the adjoint matrix. Substituting F] = det(F)F−1,

d det(F) = det(F)trF−1dF (A.7)

Integrating the both sides, the following equation is obtained for a positive definite

matrix F :

det(F) = exp(tr(log(F))) (A.8)

Substituting F = exp(A), the Lemma 5 is obtained as

det(exp(A)) = exp(tr(A)) (A.9)
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Proof of Lemma 6

The determinant and trace of a matrix A is known as the product and summation of its

eigenvalues, respectively, as

det(A) = ∏
i

λi, tr(A) = ∑
i

λi (A.10)

If the matrix is positive semi-definite, the eigenvalues satisfy λi ≥ 0. From Arithmetic

Mean-Geometric Mean Inequality, the Lemma 6 is obtained as

det(A)≤

tr(A)

n


n

(A.11)



172 APPENDIX A. PROOFS ON LEMMAS



Complete Bibliography

[1] H. S. Shin. “UAV Swarms : Decision Making Paradigms”. In: Encyclopedia of

Aerospace Engineering. John Wiley: Chichester, 2014, pp. 1–34.

[2] I. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci. “Wireless sensor net-

works: a survey”. In: Computer Networks 38.4 (2002), pp. 393–422.

[3] T. Samad, J. S. Bay, and D. Godbole. “Network-centric systems for military op-

erations in urban terrain: The role of UAVs”. In: Proceedings of the IEEE 95.1

(2007), pp. 92–107.

[4] M. Hauge, L. Landmark, and M. Amanowicz. “Selected Issues of QoS Provision

in Heterogenous Military Networks”. In: International Journal of Electronics and

Telecommunications 60.1 (2014), pp. 7–13.

[5] G. Pau and R. Tse. “Challenges and opportunities in immersive vehicular sensing:

Lessons from urban deployments”. In: Signal Processing: Image Communication

27.8 (2012), pp. 900–908.

[6] P. Carvalhal, C. Santos, M. Ferreira, L. Silva, and J. Afonso. “Design and Devel-

opment of a Fly-by-Wireless UAV Platform”. In: Aerial Vehicles (2009), pp. 1–

12.

[7] F. Ciucu and J. Schmitt. “Perspectives on network calculus: no free lunch, but still

good value”. In: SIGCOMM Comput. Commun. Rev. 42.4 (2012), pp. 311–322.

173



174 COMPLETE BIBLIOGRAPHY

[8] M. Fidler. “Survey of deterministic and stochastic service curve models in the

network calculus”. In: IEEE Communications Surveys & Tutorials 12.1 (2010),

pp. 59–86.

[9] M. Fidler and A. Rizk. “A Guide to the Stochastic Network Calculus”. In: IEEE

Communications Surveys & Tutorials PP.99 (2014), pp. 1–1.

[10] Y. Jiang and Y. Liu. Stochastic Network Calculus. Springer Berlin Heidelberg,

2008.

[11] C. Lin, Y. Deng, and Y. Jiang. “On applying stochastic network calculus”. In:

Frontiers of Computer Science 7.6 (2013), pp. 924–942.

[12] S. Y. Park and A. Sahai. “Network Coding meets Decentralized Control: Net-

work Linearization and Capacity-Stabilizablilty Equivalence”. In: arXiv (2013),

pp. 4817–4822. arXiv: 1308.5045.

[13] M. E. J. Newman. “Networks. An introduction”. In: Oxford University Press

(2010), p. 772.

[14] J. P. Hespanha, P. Naghshtabrizi, and Y. Xu. “A survey of recent results in net-

worked control systems”. In: Proc. of the IEEE 95.1 (2007), pp. 138–162.

[15] J. D. Blight, R. Lane Dailey, and D. Gangsaas. “Practical control law design for

aircraft using multivariable techniques”. In: International Journal of Control 59.1

(1994), pp. 93–137.

[16] J. Doyle and G. Stein. “Multivariable feedback design: Concepts for a classi-

cal/modern synthesis”. In: Automatic Control, IEEE Transactions on 26.1 (1981),

pp. 4–16.

[17] G. Stein and M. Athans. “The LQG / LTR Procedure for Multivariable Feed-

back Control Design”. In: IEEE Transactions on Automatic Control 32.2 (1987),

pp. 105–114.

http://arxiv.org/abs/1308.5045


175

[18] A. E. Motter, C. Zhou, and J. Kurths. “Network synchronization, diffusion, and

the paradox of heterogeneity”. In: Physical Review E - Statistical, Nonlinear, and

Soft Matter Physics 71.1 (2005), pp. 1–10.

[19] B. Wang, H. Tang, C. Guo, Z. Xiu, and T. Zhou. “Optimization of network struc-

ture to random failures”. In: Physica A: Statistical Mechanics and its Applications

368.2 (2006), pp. 607–614.

[20] T. P. Peixoto and S. Bornholdt. “Evolution of robust network topologies: Emer-

gence of central backbones”. In: Physical Review Letters 109.11 (2012), pp. 1–

5.

[21] C. Leboucher, H. S. Shin, S. Le Menec, A. Tsourdos, A. Kotenkoff, P. Siarry,

and R. Chelouah. “Novel Evolutionary Game Based Multi-Objective Optimisa-

tion for Dynamic Weapon Target Assignment”. In: the 19th World Congress The

International Federation of Automatic Control 2010 (2014), pp. 3936–3941.

[22] P. Holme. “Core-periphery organization of complex networks”. In: Physical Re-

view E - Statistical, Nonlinear, and Soft Matter Physics 72.4 (2005).

[23] V. Batagelj and A. Mrvar. “Pajek – program for large network analysis”. In: Con-

nections (1999), pp. 47–57.

[24] K. Deb. Multi-objective optimization using evolutionary algorithms: an introduc-

tion. John Wiley & Sons, LTD., 2011.

[25] M. Kok. “A Note on the Pay-off Matrix in Multiple Objective Programming”. In:

European Journal of Operational Research 26.1 (1986), pp. 96–107.

[26] J. Hofbauer and K. Sigmund. “Evolutionary Game Dynamics”. In: Bulletin of the

Anerican Mathematical Society 40.4 (2003), pp. 479–519.

[27] M. M. Zavlanos and G. J. Pappas. “Potential fields for maintaining connectivity of

mobile networks”. In: IEEE Transactions on Robotics 23.4 (2007), pp. 812–816.



176 COMPLETE BIBLIOGRAPHY

[28] R. T. Marler and J. S. Arora. “Survey of multi-objective optimization methods

for engineering”. In: Structural and Multidisciplinary Optimization 26.6 (2004),

pp. 369–395.

[29] T. Stewart, O. Bandte, H. Braun, N. Chakraborti, M. Ehrgott, M. Göbelt, Y. Jin, H.
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