159 research outputs found

    Multi-temporal landslide activity investigation by spaceborne SAR interferometry: The case study of the Polish Carpathians

    Get PDF
    The main goal of this research is to verify the activity state of landslides provided by an existing landslide inventory map using Persistent Scatterers (PS) Interferometry (PSInSAR). The study was conducted in the Małopolskie municipality, a rural setting with sparse urbanization in the Polish Flysch Carpathians. PSInSAR has been applied using Synthetic Aperture Radar (SAR) data from ALOS PALSAR and Sentinel 1A/B with different acquisition geometries (ascending and descending orbit) to increase PS coverage and mitigate the geometric effects due to layover and shadowing. The Line-Of-Sight PSInSAR measurements were projected to the steepest slope, which allowed to homogenize the results from diverse acquisition modes and to compare the displacement velocities with different slope orientations. Additionally, landslide intensity (motion rate) and expected damage maps were generated and verified during field investigations. A high correlation between PSInSAR results and in-situ damage observations was confirmed. The activity state and landslide-related expected damage maps have been confirmed for 43 out of a total of 50 landslides investigated in the field. The short temporal baseline provided by both Sentinel satellites (1A/B data) increases the PS density significantly. The study substantiates the usefulness of SAR based landslide activity monitoring for land use and land development, even in rural areas

    Detecting slope and urban potential unstable areas by means of multi-platform remote sensing techniques: the Volterra (Italy) case study

    Get PDF
    Volterra (Central Italy) is a town of great historical interest, due to its vast and well-preserved cultural heritage, including a 2.6 km long Etruscan-medieval wall enclosure representing one of the most important elements. Volterra is located on a clayey hilltop prone to landsliding, soil erosion, therefore the town is subject to structural deterioration. During 2014, two impressive collapses occurred on the wall enclosure in the southwestern urban sector. Following these events, a monitoring campaign was carried out by means of remote sensing techniques, such as space-borne (PS-InSAR) and ground-based (GB-InSAR) radar interferometry, in order to analyze the displacements occurring both in the urban area and the surrounding slopes, and therefore to detect possible critical sectors with respect to instability phenomena. Infrared thermography (IRT) was also applied with the aim of detecting possible criticalities on the wall-enclosure, with special regards to moisture and seepage areas. PS-InSAR data allowed a stability back-monitoring on the area, revealing 19 active clusters displaying ground velocity higher than 10 mm/year in the period 2011–2015. The GB-InSAR system detected an acceleration up to 1.7 mm/h in near-real time as the March 2014 failure precursor. The IRT technique, employed on a double survey campaign, in both dry and rainy conditions, permitted to acquire 65 thermograms covering 23 sectors of the town wall, highlighting four thermal anomalies. The outcomes of this work demonstrate the usefulness of different remote sensing technologies for deriving information in risk prevention and management, and the importance of choosing the appropriate technology depending on the target, time sampling and investigation scale. In this paper, the use of a multi-platform remote sensing system permitted technical support of the local authorities and conservators, providing a comprehensive overview of the Volterra site, its cultural heritage and landscape, both in near-real time and back-analysis and at different scales of investigation

    Estimating Land Subsidence and Gravimetric Anomaly Induced by Aquifer Overexploitation in the Chandigarh Tri-City Region, India by Coupling Remote Sensing with a Deep Learning Neural Network Model

    Get PDF
    This study utilizes surface displacement data from Persistent Scatterer SAR Interferometry (PSInSAR) of Sentinel-1 satellite and groundwater storage change data from the Gravity Recovery and Climate Experiment (GRACE) satellite mission to understand land subsidence in the Chandigarh tri-city region. The satellite datasets are used along with the groundwater level data obtained from wells over the study area. Since the GRACE data are available at a much coarser spatial resolution of 1o by 1o, challenges remain in correlating the dataset with PSInSAR displacement that has been multi-looked at 14 m by 14 m resolution. Therefore, multiple sources of data (i.e., the monthly average of GRACE data, groundwater storage change and monthly average PSInSAR displacement per pixel, and interpolated groundwater level data from wells for 2017 to 2022) have been deployed into a deep learning multi-layer perceptron (DLMLP) model to estimate the groundwater storage change at the urban level. This has an indirect downscaling method that is carried out successfully using the DLMLP model for the estimation of groundwater storage changes at the urban level, which is usually complicated by applying direct downscaling methods on the GRACE data. Thus, the DLMLP model developed here is a distinctive approach considered for estimating the changes in groundwater storage using PSInSAR displacement, groundwater data from wells, and GRACE data. The DLMLP model gives an R2-statistics value of 0.91 and 0.89 in the training and testing phases, respectively, and has a mean absolute error (MAE) of 1.23 and root mean square error (RMSE) of 0.87

    Basin scale assessment of landslides geomorphological setting by advanced InSAR analysis

    Get PDF
    An extensive investigation of more than 90 landslides affecting a small river basin in Central Italy was performed by combining field surveys and remote sensing techniques. We thus defined the geomorphological setting of slope instability processes. Basic information, such as landslides mapping and landslides type definition, have been acquired thanks to geomorphological field investigations and multi-temporal aerial photos interpretation, while satellite SAR archive data (acquired by ERS and Envisat from 1992 to 2010) have been analyzed by means of A-DInSAR (Advanced Differential Interferometric Synthetic Aperture Radar) techniques to evaluate landslides past displacements patterns. Multi-temporal assessment of landslides state of activity has been performed basing on geomorphological evidence criteria and past ground displacement measurements obtained by A-DInSAR. This step has been performed by means of an activity matrix derived from information achieved thanks to double orbital geometry. Thanks to this approach we also achieved more detailed knowledge about the landslides kinematics in time and space

    Multi-sensor synergy for persistent scatterer interferometry based ground subsidence monitoring

    Get PDF
    Ground subsidence is a common phenomenon which causes disturbances and damages on the Earth’s surface. Especially in urban areas, it poses risk to life and property. Establishing solutions for damage prevention requires knowledge of subsidence behavior over time and space, which entails the collection of geospatial information. The present work investigates the ground surface dynamics over a field of deep mining in Sondershausen, Germany based on multi-temporal Synthetic Aperture Radar (SAR) images. Deformation patterns are extracted by means of Persistent Scatterer Interferometry (PSI), a technique that exploits the spatio-temporal characteristics of interferometric signatures from persistent scatterers. Since the impact of subsidence on surface structures varies spatially, high-risk areas can only be identified when the subsidence profile is known. To model the geometry of the subsidence bowl, the present study extends the extracted point information to a surface of estimations by interpolation. Furthermore, by the synergistic usage of PS estimations from different satellite sensors, this research addresses the problem of undersampling in critical areas, which is a common limitation of the PSI approach. The methodology developed here estimates missing information, i.e. refines the initial model, by deformation map of a different sensor covering a different time interval. In order to extend the period of monitoring as well as to improve the spatial and temporal sampling, the ground subsidence in Sondershausen is monitored with a multi-sensor SAR dataset. The C- and L-band acquisitions of the sensors ERS-1/2 (1995–2005), Envisat-ASAR (2004–2010) and ALOS-PALSAR (2007–2010) are used to derive 15 years of subsidence information at the location of persistent scatterers. From a temporal viewpoint, the obtained deformation maps indicate a non-linearly decreasing trend of ground subsidence, which is consistent with the backfilling history of the mine. From a spatial viewpoint, the results suggest one major subsidence trough located in the urban area of Sondershausen and a minor one found in the nearby village of Großfurra. The PSI deformation maps and models are validated in reference to the available leveling measurements covering the site in Sondershausen. In general, the validation results suggest a good agreement between the PSI and surveying models with the normalized root-mean-square error (RMSE) lower than 0.11. However, some significant deviations of ERS estimations are also found for a critical region. In this area the absence of persistent scatterers contributes largely to the observed differences. Consequently, the spatial refinement by synergy is applied to this region. The integration of points from ASAR or PALSAR deformation maps result in an improvement in the modeled geometry of the subsidence trough. With this improvement the RMSE calculated for the ERS model is decreased from 0.061 to 0.054. The application demonstrates the synergistic potential of multi-sensor PSI analysis to improve the interpretation of ground subsidence characteristics and, thus, to increase the confidence of risk assessment.Absenkungen des Bodens stellen ein häufig auftretendes Phänomen dar. Diese Bodensenkungen verursachen Störungen und Schäden an der Erdoberfläche, die, insbesondere in urbanen Gebieten, Menschenleben gefährden und die bestehende Infrastruktur beschädigen können. Die Entwicklung von Lösungsansätzen zur Vermeidung von Schäden erfordert fundierte Kenntnisse über die räumliche und zeitliche Verteilung der Absenkungsbewegungen. Im Rahmen der vorliegenden Studie wurde die Dynamik der Bodenbewegungen über dem Salzabbaugebiet Sondershausen in Deutschland mittels Zeitserien von Synthetic Aperture Radar (SAR)-Aufnahmen untersucht. Zur Analyse der Zeitserien wurde das Verfahren der Persistent Scatterer Interferometry (PSI) eingesetzt. Diese Methode zur Extraktion der Bodendeformation basiert auf der Auswertung räumlicher und zeitlicher Charakteristika der interferometrischen Signaturen zeitlich stabiler Punktstreuer. Zur Bestimmung von Gebieten, die von den Bodensenkungen besonders stark betroffen sind, ist eine detailliertere Ermittlung der geometrischen Eigenschaften der Absenkung nötig, da die Oberflächenstrukturen entlang des Absenkungsprofiles variieren. Aufgrund dessen wurde in der vorliegenden Studie die punktweise gewonnene Information in die Flache extrapoliert, um eine räumliche Modellierung des Absenkungsbeckens zu ermöglichen. Zur genauen Vermessung von Absenkungen mittels PSI ist eine möglichst hohe räumliche und zeitliche Abtastrate anzustreben. Diese sind bei der Untersuchung eines Gebietes mithilfe eines einzelnen Radarsensors häufig nicht gewährleistet. Im Rahmen der vorliegenden Arbeit wird ein Lösungsansatz für diese Limitation vorgestellt, welcher auf der synergetischen Verschneidung von Deformationskarten mehrerer Radarsensoren basiert. Fehlende Messwerte in der ERS-Zeitreihe werden anhand von Punktstreuern in ASAR- und PALSAR-Szenen geschätzt. Die Bodenbewegungen im Gebiet Sondershausen wurden mithilfe von Daten verschiedener Radarsensoren beobachtet, um eine verbesserte räumliche und zeitliche Abtastrate zu erzielen. Hierzu wurden Aufnahmen der C- bzw. L-Band Sensoren ERS-1/2 (1995–2005), Envisat-ASAR (2004–2010) und ALOS-PALSAR (2007–2010) auf zeitlich stabile Punktstreuer untersucht. Die zeitliche Analyse der resultierenden Deformationskarten zeigt eine nicht-lineare Abnahme der Bodenabsenkungen. Dieses Verhalten steht im Einklang mit den rezenten Verfüllungsaktivitäten in der stillgelegten Mine. Die räumliche Auswertung der Daten deutet auf ein Absenkungsbecken im Stadtgebiet von Sondershausen hin. Ein weiteres, kleineres Becken konnte um die Siedlung Großfurra identifiziert werden. Sowohl die Deformationskarten als auch die abgeleiteten Modelle wurden einer umfangreichen Validierung anhand von Nivellement-Messungen unterzogen. Die Ergebnisse zeigen generell eine gute Übereinstimmung zwischen den PSI- und Bodenmessungen mit einem root-mean-square error (RMSE) von weniger als 0,11. Nur vereinzelt kommt es zu signifikanten Abweichungen, was insbesondere auf die ERS-Ergebnisse zutrifft. Dies lässt sich durch fehlende Punktstreuer in den aktiven Absenkungsbereichen während der ERS-Messungen begründen. Durch die Integration von Punkten aus den ASAR oder PALSAR-basierenden Deformationskarten konnte die Geometrie der Absenkungen verbessert werden. Der für das ERS-Modell ermittelte RMSE verringert sich auf diese Weise von 0,061 auf 0,054. Die vorliegende Anwendung zeigt das Synergiepotential multi-sensoraler Daten und Methoden verbesserten Interpretation von Bodenabsenkungen sowie zur genaueren Abschatzung und Bewertung von daraus resultierenden Risiken

    Multisource data integration to investigate one century of evolution for the Agnone landslide (Molise, southern Italy)

    Get PDF
    Landslides are one of the most relevant geohazards worldwide, causing direct and indirect costs and fatalities. Italy is one of the countries most affected by mass movements, and the Molise region, southern Italy, is known to be susceptible to erosional processes and landslides. In January 2003, a landslide in the municipality of Agnone, in the Colle Lapponi-Piano Ovetta (CL-PO) territory, occurred causing substantial damage to both structures and civil infrastructure. To investigate the evolution of the landslide-affected catchment over approximately one century, different data were taken into account: (i) literature information at the beginning of the twentieth century; (ii) historical sets of aerial optical photographs to analyse the geomorphological evolution from 1945 to 2003; (iii) SAR (Synthetic Aperture Radar) data fromthe ERS1/2, ENVISATand COSMO-SkyMed satellites tomonitor the displacement from 1992 to 2015; (iv) traditional measurements carried out through geological and geomorphological surveys, inclinometers and GPS campaigns to characterize the geological setting of the area; and (v) recent optical photographs of the catchment area to determine the enlargement of the landslide. Using the structure from motion technique, a 3D reconstruction of each set of historical aerial photographs was made to investigate the geomorphological evolution and to trace the boundary of the mass movements. As a result, the combination of multitemporal and multitechnique analysis of the evolution of the CL-PO landslide enabled an assessment of the landslide expansion, which resulted in a maximum length of up to approximately 1500 m. A complete investigation of the past and present deformational sequences of the area was performed to potentially plan further mitigation and prevention strategies to avoid possible reactivations
    • …
    corecore