112 research outputs found

    Persistent homology of unweighted complex networks via discrete Morse theory

    Full text link
    Topological data analysis can reveal higher-order structure beyond pairwise connections between vertices in complex networks. We present a new method based on discrete Morse theory to study topological properties of unweighted and undirected networks using persistent homology. Leveraging on the features of discrete Morse theory, our method not only captures the topology of the clique complex of such graphs via the concept of critical simplices, but also achieves close to the theoretical minimum number of critical simplices in several analyzed model and real networks. This leads to a reduced filtration scheme based on the subsequence of the corresponding critical weights, thereby leading to a significant increase in computational efficiency. We have employed our filtration scheme to explore the persistent homology of several model and real-world networks. In particular, we show that our method can detect differences in the higher-order structure of networks, and the corresponding persistence diagrams can be used to distinguish between different model networks. In summary, our method based on discrete Morse theory further increases the applicability of persistent homology to investigate the global topology of complex networks.Comment: 36 pages, 6 main figures, SI Appendix and SI Figures; SI Tables available upon request from author

    Forman-Ricci curvature and Persistent homology of unweighted complex networks

    Full text link
    We present the application of topological data analysis (TDA) to study unweighted complex networks via their persistent homology. By endowing appropriate weights that capture the inherent topological characteristics of such a network, we convert an unweighted network into a weighted one. Standard TDA tools are then used to compute their persistent homology. To this end, we use two main quantifiers: a local measure based on Forman's discretized version of Ricci curvature, and a global measure based on edge betweenness centrality. We have employed these methods to study various model and real-world networks. Our results show that persistent homology can be used to distinguish between model and real networks with different topological properties.Comment: 25 pages, 6 Main figures, 10 SI figure

    Reduction Algorithms for Persistence Diagrams of Networks: CoralTDA and PrunIT

    Full text link
    Topological data analysis (TDA) delivers invaluable and complementary information on the intrinsic properties of data inaccessible to conventional methods. However, high computational costs remain the primary roadblock hindering the successful application of TDA in real-world studies, particularly with machine learning on large complex networks. Indeed, most modern networks such as citation, blockchain, and online social networks often have hundreds of thousands of vertices, making the application of existing TDA methods infeasible. We develop two new, remarkably simple but effective algorithms to compute the exact persistence diagrams of large graphs to address this major TDA limitation. First, we prove that (k+1)(k+1)-core of a graph G\mathcal{G} suffices to compute its kthk^{th} persistence diagram, PDk(G)PD_k(\mathcal{G}). Second, we introduce a pruning algorithm for graphs to compute their persistence diagrams by removing the dominated vertices. Our experiments on large networks show that our novel approach can achieve computational gains up to 95%. The developed framework provides the first bridge between the graph theory and TDA, with applications in machine learning of large complex networks. Our implementation is available at https://github.com/cakcora/PersistentHomologyWithCoralPrunitComment: Spotlight paper at NeurIPS 202

    Visualizing Topological Importance: A Class-Driven Approach

    Full text link
    This paper presents the first approach to visualize the importance of topological features that define classes of data. Topological features, with their ability to abstract the fundamental structure of complex data, are an integral component of visualization and analysis pipelines. Although not all topological features present in data are of equal importance. To date, the default definition of feature importance is often assumed and fixed. This work shows how proven explainable deep learning approaches can be adapted for use in topological classification. In doing so, it provides the first technique that illuminates what topological structures are important in each dataset in regards to their class label. In particular, the approach uses a learned metric classifier with a density estimator of the points of a persistence diagram as input. This metric learns how to reweigh this density such that classification accuracy is high. By extracting this weight, an importance field on persistent point density can be created. This provides an intuitive representation of persistence point importance that can be used to drive new visualizations. This work provides two examples: Visualization on each diagram directly and, in the case of sublevel set filtrations on images, directly on the images themselves. This work highlights real-world examples of this approach visualizing the important topological features in graph, 3D shape, and medical image data.Comment: 11 pages, 11 figure

    PHDP: Preserving Persistent Homology in Differentially Private Graph Publications

    Get PDF
    Online social networks (OSNs) routinely share and analyze user data. This requires protection of sensitive user information. Researchers have proposed several techniques to anonymize the data of OSNs. Some differential-privacy techniques claim to preserve graph utility under certain graph metrics, as well as guarantee strict privacy. However, each graph utility metric reveals the whole graph in specific aspects.We employ persistent homology to give a comprehensive description of the graph utility in OSNs. This paper proposes a novel anonymization scheme, called PHDP, which preserves persistent homology and satisfies differential privacy. To strengthen privacy protection, we add exponential noise to the adjacency matrix of the network and find the number of adding/deleting edges. To maintain persistent homology, we collect edges along persistent structures and avoid perturbation on these edges. Our regeneration algorithms balance persistent homology with differential privacy, publishing an anonymized graph with a guarantee of both. Evaluation result show that the PHDP-anonymized graph achieves high graph utility, both in graph metrics and application metrics
    • …
    corecore