12 research outputs found

    Persistence codebooks for topological data analysis

    Get PDF
    Persistent homology is a rigorous mathematical theory that provides a robust descriptor of data in the form of persistence diagrams (PDs) which are 2D multisets of points. Their variable size makes them, however, difficult to combine with typical machine learning workflows. In this paper we introduce persistence codebooks, a novel expressive and discriminative fixed-size vectorized representation of PDs that adapts to the inherent sparsity of persistence diagrams. To this end, we adapt bag-of-words, vectors of locally aggregated descriptors and Fischer vectors for the quantization of PDs. Persistence codebooks represent PDs in a convenient way for machine learning and statistical analysis and have a number of favorable practical and theoretical properties including 1-Wasserstein stability. We evaluate the presented representations on several heterogeneous datasets and show their (high) discriminative power. Our approach yields comparable-and partly even higher-performance in much less time than alternative approaches

    Towards personalized diagnosis of Glioblastoma in Fluid-attenuated inversion recovery (FLAIR) by topological interpretable machine learning

    Full text link
    Glioblastoma multiforme (GBM) is a fast-growing and highly invasive brain tumour, it tends to occur in adults between the ages of 45 and 70 and it accounts for 52 percent of all primary brain tumours. Usually, GBMs are detected by magnetic resonance images (MRI). Among MRI, Fluid-attenuated inversion recovery (FLAIR) sequence produces high quality digital tumour representation. Fast detection and segmentation techniques are needed for overcoming subjective medical doctors (MDs) judgment. In the present investigation, we intend to demonstrate by means of numerical experiments that topological features combined with textural features can be enrolled for GBM analysis and morphological characterization on FLAIR. To this extent, we have performed three numerical experiments. In the first experiment, Topological Data Analysis (TDA) of a simplified 2D tumour growth mathematical model had allowed to understand the bio-chemical conditions that facilitate tumour growth: the higher the concentration of chemical nutrients the more virulent the process. In the second experiment topological data analysis was used for evaluating GBM temporal progression on FLAIR recorded within 90 days following treatment (e.g., chemo-radiation therapy - CRT) completion and at progression. The experiment had confirmed that persistent entropy is a viable statistics for monitoring GBM evolution during the follow-up period. In the third experiment we had developed a novel methodology based on topological and textural features and automatic interpretable machine learning for automatic GBM classification on FLAIR. The algorithm reached a classification accuracy up to the 97%.Comment: 22 pages; 16 figure

    Mathematics in Medical Diagnostics - 2022 Proceedings of the 4th International Conference on Trauma Surgery Technology

    Get PDF
    The 4th event of the Giessen International Conference Series on Trauma Surgery Technology took place on April, the 23rd 2022 in Warsaw, Poland. It aims to bring together practical application research, with a focus on medical imaging, and the TDA experts from Warsaw. This publication contains details of our presentations and discussions

    Approximating Continuous Functions on Persistence Diagrams Using Template Functions

    Full text link
    The persistence diagram is an increasingly useful tool from Topological Data Analysis, but its use alongside typical machine learning techniques requires mathematical finesse. The most success to date has come from methods that map persistence diagrams into Rn\mathbb{R}^n, in a way which maximizes the structure preserved. This process is commonly referred to as featurization. In this paper, we describe a mathematical framework for featurization using template functions. These functions are general as they are only required to be continuous and compactly supported. We discuss two realizations: tent functions, which emphasize the local contributions of points in a persistence diagram, and interpolating polynomials, which capture global pairwise interactions. We combine the resulting features with classification and regression algorithms on several examples including shape data and the Rossler system. Our results show that using template functions yields high accuracy rates that match and often exceed those of existing featurization methods. One counter-intuitive observation is that in most cases using interpolating polynomials, where each point contributes globally to the feature vector, yields significantly better results than using tent functions, where the contribution of each point is localized. Along the way, we provide a complete characterization of compactness in the space of persistence diagrams
    corecore