1,495 research outputs found

    Permutation-partition pairs. III. Embedding distributions of linear families of graphs

    Get PDF
    AbstractFor any fixed graph H, and H-linear family of graphs is a sequence {Gn}n=1∞ of graphs in which Gn consists of n copies of H that have been linked in a consistent manner so as to form a chain. Generating functions for the region distribution of any such family are found. It is also shown that the minimum genus and the average genus of Gn are essentially linear functions of n

    Random 2-cell embeddings of multistars

    Full text link
    Random 2-cell embeddings of a given graph GG are obtained by choosing a random local rotation around every vertex. We analyze the expected number of faces, E[FG]\mathbb{E}[F_G], of such an embedding which is equivalent to studying its average genus. So far, tight results are known for two families called monopoles and dipoles. We extend the dipole result to a more general family called multistars, i.e., loopless multigraphs in which there is a vertex incident with all the edges. In particular, we show that the expected number of faces of every multistar with nn nonleaf edges lies in an interval of length 2/(n+1)2/(n + 1) centered at the expected number of faces of an nn-edge dipole. This allows us to derive bounds on E[FG]\mathbb{E}[F_G] for any given graph GG in terms of vertex degrees. We conjecture that E[FG]O(n)\mathbb{E}[F_G ] \le O(n) for any simple nn-vertex graph GG.Comment: 15 pages, 2 figures. Accepted to European conference on combinatorics, graph theory and applications (EUROCOMB) 202

    Sign rank versus VC dimension

    Full text link
    This work studies the maximum possible sign rank of N×NN \times N sign matrices with a given VC dimension dd. For d=1d=1, this maximum is {three}. For d=2d=2, this maximum is Θ~(N1/2)\tilde{\Theta}(N^{1/2}). For d>2d >2, similar but slightly less accurate statements hold. {The lower bounds improve over previous ones by Ben-David et al., and the upper bounds are novel.} The lower bounds are obtained by probabilistic constructions, using a theorem of Warren in real algebraic topology. The upper bounds are obtained using a result of Welzl about spanning trees with low stabbing number, and using the moment curve. The upper bound technique is also used to: (i) provide estimates on the number of classes of a given VC dimension, and the number of maximum classes of a given VC dimension -- answering a question of Frankl from '89, and (ii) design an efficient algorithm that provides an O(N/log(N))O(N/\log(N)) multiplicative approximation for the sign rank. We also observe a general connection between sign rank and spectral gaps which is based on Forster's argument. Consider the N×NN \times N adjacency matrix of a Δ\Delta regular graph with a second eigenvalue of absolute value λ\lambda and ΔN/2\Delta \leq N/2. We show that the sign rank of the signed version of this matrix is at least Δ/λ\Delta/\lambda. We use this connection to prove the existence of a maximum class C{±1}NC\subseteq\{\pm 1\}^N with VC dimension 22 and sign rank Θ~(N1/2)\tilde{\Theta}(N^{1/2}). This answers a question of Ben-David et al.~regarding the sign rank of large VC classes. We also describe limitations of this approach, in the spirit of the Alon-Boppana theorem. We further describe connections to communication complexity, geometry, learning theory, and combinatorics.Comment: 33 pages. This is a revised version of the paper "Sign rank versus VC dimension". Additional results in this version: (i) Estimates on the number of maximum VC classes (answering a question of Frankl from '89). (ii) Estimates on the sign rank of large VC classes (answering a question of Ben-David et al. from '03). (iii) A discussion on the computational complexity of computing the sign-ran

    Harmonic functions on multiplicative graphs and interpolation polynomials

    Get PDF
    We construct examples of nonnegative harmonic functions on certain graded graphs: the Young lattice and its generalizations. Such functions first emerged in harmonic analysis on the infinite symmetric group. Our method relies on multivariate interpolation polynomials associated with Schur's S and P functions and with Jack symmetric functions. As a by-product, we compute certain Selberg-type integrals.Comment: AMSTeX, 35 page

    Compound real Wishart and q-Wishart matrices

    Full text link
    We introduce a family of matrices with non-commutative entries that generalize the classical real Wishart matrices. With the help of the Brauer product, we derive a non-asymptotic expression for the moments of traces of monomials in such matrices; the expression is quite similar to the formula derived in our previous work for independent complex Wishart matrices. We then analyze the fluctuations about the Marchenko-Pastur law. We show that after centering by the mean, traces of real symmetric polynomials in q-Wishart matrices converge in distribution, and we identify the asymptotic law as the normal law when q=1, and as the semicircle law when q=0

    Sparsest Cut on Bounded Treewidth Graphs: Algorithms and Hardness Results

    Full text link
    We give a 2-approximation algorithm for Non-Uniform Sparsest Cut that runs in time nO(k)n^{O(k)}, where kk is the treewidth of the graph. This improves on the previous 22k2^{2^k}-approximation in time \poly(n) 2^{O(k)} due to Chlamt\'a\v{c} et al. To complement this algorithm, we show the following hardness results: If the Non-Uniform Sparsest Cut problem has a ρ\rho-approximation for series-parallel graphs (where ρ1\rho \geq 1), then the Max Cut problem has an algorithm with approximation factor arbitrarily close to 1/ρ1/\rho. Hence, even for such restricted graphs (which have treewidth 2), the Sparsest Cut problem is NP-hard to approximate better than 17/16ϵ17/16 - \epsilon for ϵ>0\epsilon > 0; assuming the Unique Games Conjecture the hardness becomes 1/αGWϵ1/\alpha_{GW} - \epsilon. For graphs with large (but constant) treewidth, we show a hardness result of 2ϵ2 - \epsilon assuming the Unique Games Conjecture. Our algorithm rounds a linear program based on (a subset of) the Sherali-Adams lift of the standard Sparsest Cut LP. We show that even for treewidth-2 graphs, the LP has an integrality gap close to 2 even after polynomially many rounds of Sherali-Adams. Hence our approach cannot be improved even on such restricted graphs without using a stronger relaxation
    corecore