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For any fixed graph H, an H-linear family of graphs is a sequence { G,,)z= i of 
graphs in which G, consists of n copies of H that have been linked in a consistent 
manner so as to form a chain. Generating functions for the region distribution of 
any such family are found. It is also shown that the minimum genus and the 
average genus of G, are essentially linear functions ofn. 0 1991 Academic Press, Inc. 

INTRODUCTION 

The genus distribution of the orientable 2-cell embeddings of various 
families of graphs has been the subject of a considerable amount of atten- 
tion in recent years [l, 4, 5, 13-16, 18, 193. This article is concerned with 
the distributions of graphs that, loosely speaking, consist of a chain of links 
that are joined to each other in a consistent manner. It is reasonable to 
expect that the genus distribution of such a chain should be a function of 
its length and the genus distribution of the link. We produce recursion 
matrices that depend only on the link and the linking scheme and make 
this dependence explicit. 

In Chapter 1 we introduce the notion of a permutation-partition pair. 
These pairs are generalizations of graphs and are the formalization of the 
concept of a graph with a partially specified embedding. They have proven 
useful elsewhere [2, 3, 11, 121 and are essential to this paper. A reduction 
procedure is described here that shows how to translate distribution 
problems regarding a given permutation-partition pair into questions 
regarding smaller pairs. This sets the stage for the recursion of Chapter 2. 
In this second chapter the above mentioned chains are formalized. Recur- 
sion matrices are associated with these chains and these matrices are in 
turn used to obtain explicit generating functions for the distributions of the 
chains. In Chapter 3 the Peron-Frobenius theory of stochastic matrices is 
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used to show that the average genus of a chain is an essentially linear 
function of its length. Finally, the recursion matrices are applied in 
Chapter 4 to the derivation of the minimum and maximum genera of a 
chain, and linear programming techniques are employed to prove a 
stability theorem. 

For general graph theoretical background and information the reader is 
referred to [7, 8, 171. 

1. PERMUTATION-PARTITION PAIRS 

The composition of permutations is to be read here from left to right and 
the number of factors in the disjoint cycle factorization of the permutation 
P is denoted by IIPJ(. 

A permutation-partition pair (P, l7) consists of a permutation P and a 
partition l7= { ni}~= i, both defined over a common underlying finite set 
S. This notion was first introduced in [ll] and then independently 
rediscovered, in a more geometrical form, in [2, 31, where such a pair is 
called an IDS. To every pseudograph G we can associate a permutation- 
partition pair (PG, l7,) in the following manner. Let D, be the symmetric 
digraph obtained by replacing each edge e of G with a pair if oppositely 
oriented arcs e, , e2. Let 

&= u C% e2) 
e E E(G) 

P,= I-I he,) 
ee E(G) 

17, = ( arcs of D, emanating from u E V(G) } 

We refer to the arcs of DG as the bits of G. 
It is clear that PC is necessarily a fixed-point free involution and that 

every pair (P, J7) wherein P is a fixed point free involution arises in the 
same manner from some graph. Given a pair (P, n) we denote by S(n) the 
set of all permutations Q of the underlying set S such that the orbits (cyclic 
factors) of Q agree with the members of the partition 17. If Q E ,S(A!) the 
permutation pair (P, Q) is called an embedding of the permutation-parti- 
tion pair (P, n). In the case of a pair (PC, nG) that arises from a graph G 
the above defined embeddings of (PC, nG) are in a one-to-one corre- 
spondence with the orientable embeddings of G. In this correspondence an 
embedding of G on an oriented surface Z determines the corresponding 
embedding (PC, QG) of (PC, nG) by using the counterclockwise sense at 
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each vertex v E V(G) to endow the corresponding member (n,), of 
17G with a cyclic order. For example, if G is the graph K4 of Fig. 1, 
then PG= (1 2)(3 4)(5 6)(7 8)(9 a)@ c) and 17, = ({ 1,3,5), (2,7, b}, 
(4, 8, 9}, { 6, a, c} }. This correspondence is such that the cyclic factors of 
P,Q, describe the regions of the embedding. Figure 1 contains two embed- 
dings of G = K4 and displays the corresponding embeddings of (P,, l7,). 
Embeddings of arbitrary pairs (P, n), where P is not necessarily a fixed 
point free involution, can also be given a geometrical interpretation (see 
[2, 3, 161). As this interpretation is irrelevant to the subsequent discussion 
it will be ignored here. 

We now go on to show that arbitrary permutation-partition pairs have 
a natural interpretation as graphs with embedding constraints. If a, b E S 
are in the same member of I7 we shall write 

a-b (mod n). 

b 

5 6 

FIG. 1. (a) A plane embedding of K4 with Q, = (531)(ca6)(849)(27b), PGQG = (174)(25c) 
(396)(8ba); (b) a toroid embedding of K4 with Q,= (531)(ca6)(894)(2b7), I’,&= 
(lba4)(25c79638). 
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A constraint on the pair (P, n) is an ordered pair, denoted by a + b, such 
that a 3 b (mod l7). A constraint set C on (P, n) is a set 

C= (ai+bi}f=,, 

where the ai + bi are constraints, the ai are all distinct, and the b, are also 
all distinct. If C is a constraint set on (P, n), then we define 

S(l7, C) = {Q E S(l7) 1 aiQ = bi, i= 1,2, . . . . c}. 

Thus it is the function of a constraint set of (P, n) to prespecify some of 
the action of the otherwise arbitrary permutation Q of s(n). It is clear that 
each b E S induces a partition 

S(n)= U S(H,a-+b). 
a=b,a#b 

For any permutation P on S let P/b denote the permutation of S - (b} 
obtained by deleting b from the disjoint cycle factorization of P. Thus, if 
P= (1 2 3)(4 5)(6), then P/l = (2 3)(4 5)(6), P/5 = (1 2 3)(4)(6), and 
P/6 = (1 2 3)(4 5). Similarly, for any partition I7 of S, IT/b denotes the 
partition of S - {b) obtained by deleting b from its containing member in 
17. For any constraint a -+ b of (P, n) we denote by (P, II)/a + b the pair 
(p, n) defined over the set s = S - {b}, where 

fi=17/b 

1 

P(b a bP)/b if a#bP,a#b, b#bP 

P = P(b a)/b = P/b if a=bP#b or a=b#bP 

Plb if b=bP 

For example, if 

(P, W= ((1 2 3 4)(5 6 7)(g), ({L 3, 5761, (274, 7, g>>), 
then 

(K 17)/3 -+ 1 = ((2)(3 4)(5 6 7)(g), ( (3, 5,6}, {2,4,7,8>>), 

(f’, W/5 -+ 1 = ((2 3 4 5 6 7)(g), ((3, 5, 6}, {2,4,7, g}}), 

(P,W6+1=((2 3 4 6 7 5)(g), {(3,5,6}, (2,4,7,8}}), 

U’, 17)/2+4=((2 3)(1)(5 6 7)(S), ((1, 3, 5, 6}, (2, 7, g>>), 

(P, W/7 + 2= ((3 4 1 7 5 6)(g), ({ 1, 3,5,6}, (497, g}}), 

(P, Wg + 2= ((3 4 1 g)(5 6 7), { (1, 3, 5,617 (477, g}}), 

R n)/6+ 5 = ((1 2 3 4)(6 7)(g), ((1, 3,6}, (2,4,7,83>). 

(U-W2+g=((l 2 3 4)(5 6 7), (jl,3,5,6}, (2,4,7}}). 
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The reader may find the following observations regarding the derivation of 
P from P helpful. If a and b are in the same orbit B = (a d - - - e b f - - - g) 
of P, then P is obtained from P by splitting B (at a and at b) into two 
cycles, and suppressing b in one, so as to obtain B, B2 = (a d - - - e)(f - - - g); 
all the other orbits of P are inherited intact by F. If a and b are in distinct 
orbits B, = (a d -- - e) and B2 = (b f -- - g) of P, then P is obtained by 
coalescing B, and B2 into a single cycle and deleting b so as to get the cycle 
B=(a d . . . e f . . . g); again, all the other orbits of P are inherited intact 
by P. 

Our strategy will be to describe a reduction procedure that replaces an 
arbitrary pair (P, n) by a set of smaller pairs, thus allowing for standard 
recursion procedures to be applied. Specifically, if (P, n) is an arbitrary 
pair and b is an arbitrary element of the underlying set S, then (P, L!) will 
be replaced by 

((P,l7)/a+b)a=b(modl7),a#b). 

LEMMA 1.1. Let (P, l7) be a pair with bits a # b, and let (p, n) = (P, l7)/ 
a -+ b. Then the function 

j S(17, a -+ b) + S(n) 

defined by 
f(Q)= (a b)Q/b Ef 0 

is a bijection such that 

-- 
IWII = I 

ll%?II + 1 f a=bP#b 
,,jq,, 

a therwise. 

ProoJ: Note that for any Q E S(17; a + b), (a b)Q has (b) as a 
singleton, and hence f is clearly injective. It is surjective because for any 
Q E s(n), (a b)Q maps a to b and 

Note that 
f((a b)Q) = Q. 

P(bP a b) if a#bP#b 

P= P(a b) if a=bP#b 

P(b) if b= bP. 

Hence, if a # bP # b, since b is in the domain of neither P nor Q, 

IIPQII = II~W’ a Ma Nell 
= IIp(bP b)Ql[ = II@/. 
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On the other hand, if a = bP # b, 

IIPQII = llh b)(a b>~ll = II~(b)PII 

= IIPQ/l + 1. 

If b = bP then llPQI\ = IIB(b)(a b)Ql\ = IIpQII. 

The orbit distribution of the pair (P, n) is the function 

Q.E.D. 

qP.n)(w= IfQES(~)I IIPQII =w 

Note that a simple parity argument implies that if r(,,,,(k) # 0 for some k, 
then rtp, &k + 1) = 0. 

COROLLARY 1.2. If (P, I7) is a permutation-partition pair, b E S, and 
(b) 4 l7, then 

r(P, n,(k) = c Y(P, z7),u + b(k - b,bP)9 
a=b(modI7),a#b 

s 
0 if a#bP 

a,bP = 1 if a=bP. 

It is also necessary to have a version of the above reduction process that 
disposes of the degenerate case, where {b) is a singleton member of 17. 
Accordingly, if I7 = {ni} f= 1 and {b} = 17, we define 

17/b= {n- (nio)> 

(P, n)/b + b = (P/b, n/b). 

LEMMA 1.3. Let (P, II) be a pair such that (b) EII, and let 
( p, n) = (P, 17)/b + b. Then the function 

defined by 
f: s(n) --) S(ir) 

f(Q) = Q/b gf Q 

is a bijection such that 

if b#bP 
if b=bP. 

Proof: The function f is clearly a bijection, since it merely deletes the 
orbit (b) from Q. Note that if b # bP, then B = P/b = P(b bP)/b, where (b) 
is an orbit of P(b bP). Hence, in this case, 

IIPQII = IIp@ WW~II = llp~ll 
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since b is in the domain of neither P nor p. On the other hand, if b = bP, 
then (b) is an orbit of both P and Q, and so clearly 

IIWII = IIP W 011 = ll~c?ll + 1. Q.E.D. 

COROLLARY 1.4. If (P, I7) is a permutation-partition pair such that 
(b) E 17, then 

r(P,n)w = Y(P,z7),b + bW - 6,,bP), 

where 

6 
0 if b#bP 

b,bP = 1 if b = bP. 

For any graph G let r&k) denote the number of 2-cell orientable 
embeddings of G that have exactly k regions. This function is the region 
distribution of G. If (PG, n,) is the pair associated above with G, then 

rcw = q,,,,)(k)* 

The average pep, n) of the orbit distribution r(, *), where 17 = { ni>k_ 1 and 
pi= lI7il is 

l%>m =[fil (pi-l)!]-’ zl kr(P9n)(k) 

and we set 

The complete reduction diagram qp,nJ of the pair (P, n) is a weighted 
directed graph that pictures the above reduction process and is constructed 
as follows. Let s= (b, < b2 6 . . . < b,) be any linear ordering of the set S 
that underlies the pair (P, n) and let Yii!n, = ((P, n) >. Assuming that the 
vertex set Y(i) 
this set Y(i) 

(p nj (0 < i < n) has been defined, let (P, n) be any vertex in 
(P,Z7): If {bi+ll is a singleton member of fl, then (p, n) has only 

one descendent, namely, (P, B)/bi+, + bi+ 1. If on the other hand {bi+l} 
is not a singleton member of n, then each of the pairs (p, @/a + bi+ 1 
(aEbi+l, a # bi+ 1) is a descendent of (p, n). Each branch from (p, fl) to 
any of its descendent (P, n)/a -+ bi+ 1 is assigned the weight 6a,b,+, P. The 
vertex set Yti+ ‘) (p nJ consists of the set of all the descendents of all the vertices 
in rfi) (5nJ. Jt is clear that each pair of vertices (P, n) and (F, A) in Yis,rrJ 
have l7= n and also have the same underlying set S= (bi+l, bit*, . . . . b,}. 
The set Y((n) (p nJ consists of only the trivial pair (4, 4). The next lemma 
follows immediately from Corollaries 1.2 and 1.4. 
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LEMMA 1.5. The embeddings of the pair (P, lI) are in a one-to-one 
correspondence with the directed paths of q;p,nj that start from (P, ll) and 
end at (4, 9). This correspondence is such that the number of regions of the 
embedding (P, Q) (i.e. 11 PQII ) ’ g IS iven by the sum of the weights along the 
corresponding path. 

If (P, LT) is the pair that corresponds to the graph G, then qP, nJ will be 
written as &. By the partial reduction diagram Ti:,$, we shall mean the 
portion of qP,nJ that is induced by Ui G i Yi$,n,. Examples of such 
diagrams appear in Figs. 2, 3, where n has been suppressed. 

(1 a(3 4)~ 6) 

(1 a(4 3 5) 3-y 4)w 

(1 w3 4) 

I 

(1) 

6= 1 

0 

FIGURE 2 
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1 

f 

3 

G= 
2 PC= (1 4)(2 5)(3 6) 

5 nG = 4 6 ((1 ,U%W,W 

(4 1 3)(2 5) (1 4)(5 2 3) 

4-?,5 4+5 

(4 1 3 2) (4 1 2 3) 

4-14 444 

6=1 l-91 

0 

FIGURE 3 

2. GENERATING FUNCTIONS 

Let H be a graph. Loosely speaking, a family of graphs 9 = (G, > ,“= 1 is 
said to be H-linear if each G, consists of a chain of n copies of H each of 
which is linked to the next in a consistent manner. More formally, let U1 
and U2 be two disjoint subsets of V(H) and z: US -+ U1 be a bijection. For 
each n 2 1 let H, be a copy of H with an isomorphism fn: H, --) H which 
is read as simultaneously mapping the vertices, edges, and bits of H,, onto 
those of H. Finally, G, is constructed from (H, , H,, . . . . H,} by identifying 

582b/52/2-4 
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each vertex u of ( UZ)fil c Hi with the vertex (~)filf~<~~ of 
( Ul)fi~ll G Hi+ 1, for each i= 1, 2, . . . . ~2 - 1. 

EXAMPLE 2.1. The cobblestone path [4] of Fig. 4. Here Ui = { Ui>, 
i= 1,2 and z(u2)=u1. 

EXAMPLE 2.2. The diamond band of Fig. 5. Here Ui = { Ui), i = 1,2 and 
z(uJ = u1. 

EXAMPLE 2.3. The ladder [4] of Fig. 6. Here Ui = {ui, U,>, i = 1, 2, 
z(u2) = u1, z(u2) = Ul. 

Let the H-linear family % = {G,>,“= 1 be fixed. We go on to associate 
with this family a sequence ( r’E)}Ca = 0 of nonnegative integer matrices 
which describe a recursion between G, and those of G, _ 1. Let (P, n) be 
the permutation-partition pair associated with H with the underlying set S 
consisting of the bits of H. For each permutation a of S let (I’:,, 17in) be 
the permutation-partition pair such that 

Let 15=(bI<b2< ... < bh) be a linear ordering of the set S = D(H). This 
order induces the following linear order on SG,, 

if 
-&y 

XGD(Hi), LED, and i>j, 

if X, yED(Hi) and (X)J;:G (y)fi* 

FIGURE 4 
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Given any permutation o! of S = D(H), we shall say that /I is an immediate 
copermutation of a if there exists a pair 

In other words, /I is an immediate copermutation of CI if there is a sequence 
of reductions (i.e., a path in the corresponding reduction diagram) that 
leads from P& to I$.-, for some n. Since P& is obtained by replacing the 
edges of the nth copy of H with a, this means that, loosely speaking, the 
permutation /3 is a “descendent” of a in this reduction proces. The reader 
may find Examples 2.4 and 2.5 below to be helpful. In general, the per- 
mutation /3 of S will be called a copermutation of a if there is a sequence 
a = PI, P2, “‘, /It = /? wherein each pi+ 1 is an immediate copermutation of pi 
(1 < i < t), or else pi is an immediate copermutation of pi+ I. Set a, = P, the 
graphical involution on S, and let (a,, a2, . . . . ctd) be the set of all the coper- 
mutations of a,. For the integers E 2 0, 1 < i, j < c, define Tf) = 0 if aj is not 
an immediate copermutation of ai. On the other hand, if aj is an immediate 
copermutation of ai, then 7’:) is the number of directed paths in 

whose weights add up to E. 

H: 

FIGURE 5 
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"1 “2 

H Gn 

FIGURE 6 

Or, if we let r(“)(k) be the d-vector whose jth component is 

and also set 

then 

r’“‘(/q = i T’“‘r’“- l’(k - &). (2-l 1 
&=O 

Of course, ry)(k) is the component of r(“)(k) that is of most interest to us, 
since it is the one that refers to the given graph G,, whereas the other com- 
ponents of r(“)(k) provide information about the auxiliary permutation- 
partition pairs. 

EXAMPLE 2.4. The cobblestone path. With the bits of H labelled as in 
Fig. 4, we choose 3 = (b < a < &< a) and write (x)S;’ as X, for every 
x E s. With a, = (a ti)(b b), it follows from the reductions of Figs. 7 and 8 
that a2 = (a a b b) is the only other copermutation of ~1~ and that Tp’, = 0, 
T(O)=2 T!‘\=4 Ti’)2=0, T!$)\=6, T~'),=T~),=T~:=O.Clearly, Tr)=O 
fo: all E’> 1. Thu;, 

EXAMPLE 2.5. The diamond band. With the bits of H labelled as in 
Fig.5, we choose S= (A~a~A9a~x~x~B,<bdB~h). With a,= 
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(a ti)(b b)(x %)(A A)(B B), it can be shown that a2= (a 5 A A)(b 6) 
(x %)(B B) is the only other copermutation of a, and 

For each of the copermutations aj define a generating function 

Fi(x, Y)= f Yp( k) xkyn. 
k=O,n31 

These generating functions, of which I;,(x, JJ) is, of course, the generating 
function for the region distribution of the family Y can be easily derived in 

pGn-,(an i,)(b, b,.) 

FIGURE 7 
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terms of the matrices ( T(“)} FE 0. For it follows from (2.1) that if Tj”) is the 
ith row of T’“) 9 then , for n b 2 

rink; = i Ti&)r(“- ‘)(k - &) = i t TIJ”)rj”- ‘)(k - c). 
&=O &=O j=l 

Set Qi(x) = CT= 1 r!‘)(k) xk. It then follows from the above that 

Fi(Xy y)=yQi(~) + f f i i Tjl”)rjnpl)(k-c)xky” 
n=2 k=l &=O j=l 

=yQi(X)+ i i T~‘x”~ f 5 rj”)(k)xky”. 
j=l &=O n=l k=l 

p~n-l(y, %, b, 6,) 

a,+ a 
n 

b - n-l+ bn 

a - n-l * an b - n-l + 'n 

FIGURE 8 
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If we now define the polynomial matrix P via 

p,= i T!py 

&=O 

and also the column vectors F = (F,(x, Y), F,(x, Y), 4, Q = 
(Q,(X), Q,(X), . ..) then the above equations can be written compactly as 

F=PF+yQ. 

Since P(0, 0) is the zero matrix it follows that I- P is invertible and so 

F=y(Z-P)-‘Q. (2.2) 

The considerations which lead to (2.2) are now summarized. 

THEOREM 2.6. Let 99 = (G,}rzl b e an H-linear family. Then there exists 
a positive integer h, a d x d matrix with entries in ~[cx, y], and a d-vector 
Q with components in n[x], such that I- P is invertible and the first compo- 
nent of the d-vector 

F=y(Z-P)-‘Q. 

is the generating function for the region distributions of 3. 

More specifically, if the said first component is 

c akn xkyn, 
kn 

then G, has akn embeddings with k regions. 

EXAMPLE 2.7. For the cobblestone path of Example 2.4 above we have 

P=y (; ;)+xY(; i)=(Z Z). 

To compute Q we note that 

r’,‘)(k) = 
1 if k=2 
0 otherwise 

so that QI(x) = x2. On the other hand a2 = (a ti b 6) and 

so that 
(a iz b @(a b)(LF 6) = (a b b a), 

ry)(k) = 
1 if k=l 
0 otherwise 



206 

and 

SAULSTAHL 

Q,(x) =x* 

Thus, 

F=y 

=y(l-4xy- 12y2)-’ 
* 

Hence the number of embeddings of G, that have k regions is the coef- 
ficient of xkyn in the polynomial 

(x’y + 2xy2) f 4”y”(x + 3y)“, 
m=O 

or 

2n+k-23(n-k-l)/2 i:~~~~~+2~+~-~3~~-;;i:~j~: 

which agrees with the result of [4]. 

EXAMPLE 2.8. The diamond band of Example 2.5. Here 

To compute Q we note that if l7= { {Cs, x, b), {A, 2, B 
then 

2 if k=l 

r(a,,,,(k) = 2 if k=3 
0 otherwise, 

>, (6 El, 

WI= { 
4 if k=2 

r(w, m 0 otherwise. 
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Thus, 

Ql(X) = 2x + 2x3, Q,(x) =4x2, 

and 

F=y 
l-12y-8x2y -4xy -l 2x+2x3 

- 16xy l-81.) ( 4x2 > 

=y(l -20y+96y2-8x2y)-’ 
2x + 2x3 - 16xy 

4x2 - 16x2y ’ 

This yields 

I;,=2xy(l +x2-8y) f (20y+8x2y-96~~)“. 
m=O 

3. THE AVERAGE GENUS 

We begin with a lemma about the growth rate of solutions to certain of 
simultaneous and nonhomogeneous difference equations. This is then used 
to show that modulo a certain periodicity in the constant term, the average 
genus of the member G, of a linear family ?I is asymptotically linear in n. 

LEMMA 3.1. Let T be a row stochastic m x m matrix and let q, (v@“>~! 1 
be m-vectors such that 

V(n + 1) = TV’“’ + q for n=1,2,3,4 ,.... 

If v)*j is the jth component of v@‘), then for each j = 1, 2, . . . . m there exist 
numbers aj, by and integers nj such that 

v!“‘=ajn+bj”+~(l) J 

and 
bi” = b;’ whenever n - nf (mod nj). 

ProoJ: Let S be a nonsingular matrix that brings T to its rational form. 
In other words, 

S-‘TS= , 
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If we set u@) = S-‘v@) and p = S-‘q, then 

u(“+‘L~-‘~~u(“)+p, n = 1, 2, 3, . . . . (3.1) 

Suppose now that the indices a + 1, a + 2, . . . . a + fl correspond to the 
irreducible block 

B= 

2 
1 1 

1 3, 

1 * . 
. 

of SPTS. If uj”’ and pj are the jth components of ucn) and p, respectively, 
then it follows from (3.1) that 

v~$) = AvFi 1 + pa + 1 

I 

n = 1, 2, 3, . . . 
21(“+1) = 21(“) 

a+P a+p--I+qyp+Pa+p p=2,3,4,...,P. 

Consequently, 

(3.2) 

Since T is stochastic it has spectral radius 1. Moreover, it is known [6, 
Chap. XII] that if 111 = 1 then /? = 1 and il is in fact a root of unity. Thus, 
when 1 AI = 1 we have 

i Vh’:l +np,+1 if A=1 
@+ 1) = 

a+1 [( vr: I -E) A” +E otherwise. 

Finally, if I ;I] < 1, then (3.2) becomes 
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It now follows by induction on p that for each p = 1, 2, . . . . p there exist a 
constant ctPL) and a polynomial P@)(X) of degree < ~1, both independent 
of n, such that 

,$+$ = pp(qn) + c(p), /A==,2 , ***, P* 

Since [A) < 1, it follows that 
u(“) Cf+p= dp) + o( 1). 

The lemma now follows immediately from the fact that v@) = Su(“). Q.E.D. 

THEOREM 3.2. Let 3 = (Gn};= 1 b e an H-linear family of graphs. Then 
there exist a constant A, an integer p, and a periodic sequence ( B, > ,C= 1 with 
B, = B, whenever m = n (mod p), such that 

pG,=An+B,+o(l). 

Prooj Let t, be the total number of embeddings of G,. Then, since 
each member of 

has the same number of embeddings as G, _ 1, 

t,/t,- 1 = i i T; for each 
&=o j=l 

Hence, if IL(“) is the d-vector whose jth entry is 

then 

p’“’ = t,’ f k&“‘(k) 
k=l 

= t,’ f k t T’“‘r’“-“(k-E) 

k=l &=O 

=t,’ i T’“’ ‘f (k-E)r(“-‘)(k-E) 
&=O k=l 

i = 1, 2, . . . . d. 

+ t,’ 5 T’“’ f cd” - I’(k - E) 
&=O k=l 

= t,’ i T’“’ f )&-l’(k)+ t,’ i T’“’ f &-l)(k) 

&=O k=l &=O k=l t n-l 
= 

t n 
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where 1 = (1, 1, . . . . 1). By the definition of the T(“), the matrix 

is independent of n and is row stochastic. Setting 

the column vector t is also independent of n. Thus, 

p’“’ = q&” - 1) + t. (3.3) 

Since &, is in fact the first component of p(“), Lemma 3.1 implies the 
validity of the theorem. Q.E.D. 

EXAMPLE 3.3. The cobblestone path. It follows from Example 2.4 that 

and 

t=g i)(i)=(d)- 
Because of its small dimension it is actually easier to work with T rather 
than its rational form. Here (3.3) becomes 

In other words, 

Or, 

&d = $I”- 1) + f44’+ $* 

Since pi1)=2 and pi’)= $ it can be easily shown that 
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EXAMPLE 3.4. The diamond band D,. It follows from Example 2.5 that 

T=(i t>, t=($ 
The eigenvalues of T are 1 and i with corresponding eigenvectors (1, 1) 
and (1, -4). Hence, if we set 

S= 1 1 

( 1 1 -4 

and 

P=f(;l J@=($. 
It is easily verified by direct calculations that 

Pl 
(1) = 2 

l 

or p(l)= 
2 

P2 
(1) = 2 

0 2 

and so, if v@) = S-‘p(“) 

vw = 2 

0 0 * 

Thus we now have 

which has 
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as its solution. But B(“) = Sv(“) and hence 

(n) 4n 31 1 
p&=pl =-+-- 

5 25 25.6n-1’ 

4. THE MINIMUM GENUS 

The recursion matrix T(“) can also be used to obtain information about 
the minimum (and maximum) genus of the H-linear graphs. Since a genus 
embedding of a graph is one that maximizes the number of the regions of 
the embeddings, we define the maximum orbiticity p(P, ZZ) of an arbitrary 
permutation-partition pair as follows: 

de fl) = max{ IIK?ll I e E W)). 

Let YG be the complete reduction diagram of the graph G and set 
p(G) = p(PG, ZZ,). If L varies over all the maximal directed paths of YG 
that start at its root, and if E(L) denotes the sum of the weights over all the 
edges of L, then it follows from Lemma 1.5 that 

The recursion matrices ( TF) > associated with the H-linear family +J are 
now used to define a new weighted increment digraph I%. The vertices of I3 
are the copermutations a,, a,, . . . . ad and there is an arc from ai to ai if and 
only T,> 0. Furthermore, if a is an arc from ai to aj then we assign to it 
the weight 

o(a)=max{s( TF’>O). 

EXAMPLE 4.1. The diamond band. Here, by Example 2.5 

and so Z, is the weighted graph of Fig. 9. 

For each copermutation aj let %$n denote the set of a, - aj directed 
walks of length n in I,, and let 

wn = (j Yqn. 
j=l 

The following lemma is an immediate consequence of Lemma 1.5. 
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FIGURE 9 

LEMMA 4.2. Let S’= (G,)]~xl b e an H-linear family and let IS be its 
increment graph, Then 

~(G,)=max{o(W)+p(~~,H,)lj=1,2 ,..., d, WE?,.-l}. 

A sequence (a,,}:= I is said to be eventually stable if there exist positive 
integers no, nl, and a constant c such that 

a n + no =a,+c for n>n,. 

In other words, a sequence is eventually stable if upon the removal of a 
sufficiently long initial segment the remainder is the union of a finite 
number of arithmetical progressions all of which have the same common 
difference. 

THEOREM 4.3. If 3= (G,};xl is an H-linear family then the sequence 
( y( G,) > ,a= 1 is eventually stable. 

ProoJ: Since the vertex and edge counts of (G,);= 1 form arithmetical 
progressions, it suffices to show that the sequence (p(G,) 1” n=l is eventually 
stable. Note that if (an>,“= 1 and {b,,},“= I are eventually stable, then so is 
the sequence 

Consequently it suffices to show that for each j= 1,2, . . . . d the sequence 
(Pi,,>,“= 1, where 

is eventually stable. We now regard j as fixed and simplify the rotation by 
replacing T,n with Y& in the sequel. It is clear that each directed walk W 
of 2% can be expressed (nonuniquely) as a formal sum 

4 

W=P*+ C miCi9 
i= 1 
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where Pw is a directed a, - aj path, the C,‘s are distinct edge disjoint 
directed cycles of IS, the m;s are positive integers, and the path P, shares 
at least one vertex with each of the Cis. We shall refer to (Pw, Cl, C2, . ..} 
as a support of W and write 

(Pw, Cl, c,, .*.) ESUP( W). 

Since I9 is a finite digraph, the set 9 of all possible supports is also finite. 
If we set for every support SE 9 

then it is clear that Y&Y~ = USE9 -Ifr,(S). It now follows from (4.1) that it 
suffices to prove the eventual stability of 

en = max(o( W) 1 WE wR(S)> 

for each support S. Fix S = (P, C,, C,, . . . . C,} and let p, c,, c2, . . . denote 
the lengths of P, Ci, Cs, . . . . respectively. In seeking to maximize o(W), 
where W varies over all the walks in 9%$(S) we are maximizing 

(WV+ i ww,), P-2 1 
i=l 

where the mj are subject to the constraint 

P+c t?liCi = yt. 
i=l 

(4.3 ) 

Thus (4.2, 4.3) can be restated as the integer program 

where 
Pn =max(m~~Jm~29+1,m~0,m.c=n}, 

m = (1, ml, m2, -, my) 

0 = bNG), QG,), **-, 4C,)) 

c = (p, Cl 7 c2, “‘, 5). 

The eventual stability of {p,) now follows from Lemma 4.4. 1 

LEMMA 4.4. Let u, v be m-vectors 
integers. For each positive integer n set 

whose components are nonnegative 

g(n)=max(yeu/yev=n, yEZm,y30}. (4.4) 

Then ( g(n),“_ 1 is eventually stable. 
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Proof We convert the given integer program to a linear program. In 
other words, let 

I!?* =max{y-uJy-v= l,yElFP, y>O}. WV 

Since the maximum can be assumed to occur at the extrema of the 
associated polytope, and since all the constraints have integer coefficients, 
it follows that there is a vector y(O) E R” with nonnegative rational 
components, such that 

g* = y(O) . u. 

Let d be an integer such that all the components of dy(‘) are nonnegative 
integers. Substituting C@(O) into (4.4) we see that 

g(d) > (dy”‘) . u = d(y”’ . u) 

= dg*, 

and hence 

On the other hand, for any integer n, if y(“) is a nonnegative vector of 2” 
such that 

g(n) = y’“’ * u and y’“’ *v=n, 

then the vector (l/n)y(“) satisfies the constraints of (4.5) and hence 

Hence d is an integer such that 

for all n. (4.6) 

The remainder of the proof is a minor variation on the proof of [lo, 
Theorem 111. Since g(a + b) 2 g(a) + g(b) it follows that g(kd) > kg(d). It 
therefore follows from (4.6) that 

gW0 = k(d). 

Now, for arbitrary k and 0 < r < d define 

(4.7) 

D(k, r) = g(kd + r) - g(kd). 

582b/52/2-5 
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Then, by the superadditivity of g and by (4.7) 

D(k, r)-D(k+ 1, r)=g(d)+g(kd+r)-g(kd+r+d)<O. (4.8) 

On the other hand, 

g(kd+r)+g(d-r)dg((k+ l)d)= (k+ l)g(d) 

= kg(d) + g(d) = g(W + g(d)9 

and hence 

w, 4 6 g(d) - dd- 4 for all k. 

Thus, 

D(k, r)<D(k+ 1, r)dg(d)-g(d-r) for all k. 

Since D(k, Y) can assume only integer values it follows that for each Y, 
0 < r < d, there exists an integer m, such that D(k, r) = D(k + 1, v) whenever 
k>m,. If M=max,{m,}, then, for k>M, 

D(k, Y) = D(k + 1, r) for all 0 d Y < d. 

Set n, = A4d. If n 3 ni then there exist integers k and r, satisfying k > A4 and 
0 6 r < d such that n = kd+ Y. Consequently, D(k, r) = D(k + 1, r) and 
equality must hold in (4.8). Hence, 

g(d)+g(kd+r)-g(kd+r+d)=O 

g(n) + g(d) = g(n + 4. Q.E.D. 

EXAMPLE 4.5. The diamond band. The increment graph I% is given in 
Fig. 9. Here 

da, 9 J&f) = 3 

P(% GA = 2 

PW = w - 1)+3=2n+ 1. 

Since G, has 3n + 1 vertices and 5n edges, such an embedding of G, with 
2n + 1 regions is necessarily planar. 
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It is easily seen that a similar result holds for the maximum genus of G 
which corresponds to minimizing the number of regions. The details are 
omitted except to note that the auxiliary graph Zg needs to be replaced by 
a graph .Zg each of whose arcs carries a weight that is equal to the minimum 
corresponding e. 

CONCLUSION 

The author does not know of any H-linear families of graphs for which 
the integer p of Theorem 3.2 is different from 1. In other words, in all 
known cases there is no cycling in the constant term of the asymptotic limit 
of the everage genus. This is because in all known cases the recursion 
matrix T is primitive. However, Z do not known if such is always the case. 
It is similarly quite possible that the genus sequence of Theorem 4.3 is 
immediately stable and so must be the union of a finite number of 
arithmetic progressions. 

The method introduced in this paper can be modified so as to apply to 
other families of graphs as well. Thus the author has constructed a 24 x 24 
recursion matrix P which describes the growth of the region distributions 
of such families as the ladders of [4], the circular ladders, and the Moebius 
ladders of [ 191. In fact, this matrix applies to any family of graphs wherein 
each member is obtained from the previous one by a consistent application 
of the production which replaces a pair of parallel edges with the subgraph 
obtained by joining their midpoints with a new edge. While this matrix is 
too unwieldy to obtain the explicit formulas displayed in the above referen- 
ces, it does provide for a simple demonstration of the very surprising 
similarity between the distributions of the curcular and Moebius ladders 
which was noted first in [19] and also, with less accuracy, in [l]. Its size 
notwithstanding, this matrix also makes it immediate that all these ladders 
have an average genus that is asymptotically a linear function of their 
length. It is worthy of note that the genus sequence of the Moebius ladders 
is not immediately stable, thus making it seem unlikely that such an 
immediate stability would hold for the H-linear families. 

The author thanks this colleagues John Bunce and Fred Van Vleck for 
their help with the matrix theoretic contents of Chapter III. 
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