6 research outputs found

    Permutation codes with specified packing radius

    Get PDF
    Most papers on permutation codes have concentrated on the minimum Hamming distance of the code. An (n, d) permutation code (or permutation array) is simply a set of permutations on n elements in which the Hamming distance between any pair of distinct permutations (or codewords) is at least d. An (n, 2e + 1) or (n, 2e +2) permutation code is able to correct up to e errors. These codes have a potential application to powerline communications. It is known that in an (n, 2e) permutation code the balls of radius e surrounding the codewords may all be pairwise disjoint, but usually some overlap. Thus an (n, 2e) permutation code is generally unable to correct e errors using nearest neighbour decoding. On the other hand, if the packing radius of the code is defined as the largest value of e for which the balls of radius e are all pairwise disjoint, a permutation code with packing radius e can be denoted by [n, e]. Such a permutation code can always correct e errors. In this paper it is shown that, in almost all cases considered, the number of codewords in the best [n, e] code found is substantially greater than the largest number of codewords in the best known (n, 2e + 1) code. Thus the packing radius more accurately specifies the requirement for an e-error-correcting permutation code than does the minimum Hamming distance. The techniques used include construction by automorphism group and several variations of clique search They are enhanced by two theoretical results which make the computations feasibl

    New Bounds for Permutation Codes in Ulam Metric

    Full text link
    New bounds on the cardinality of permutation codes equipped with the Ulam distance are presented. First, an integer-programming upper bound is derived, which improves on the Singleton-type upper bound in the literature for some lengths. Second, several probabilistic lower bounds are developed, which improve on the known lower bounds for large minimum distances. The results of a computer search for permutation codes are also presented.Comment: To be presented at ISIT 2015, 5 page

    Diagonally Neighbour Transitive Codes and Frequency Permutation Arrays

    Get PDF
    Constant composition codes have been proposed as suitable coding schemes to solve the narrow band and impulse noise problems associated with powerline communication. In particular, a certain class of constant composition codes called frequency permutation arrays have been suggested as ideal, in some sense, for these purposes. In this paper we characterise a family of neighbour transitive codes in Hamming graphs in which frequency permutation arrays play a central rode. We also classify all the permutation codes generated by groups in this family

    Characterisation of a family of neighbour transitive codes

    Get PDF
    We consider codes of length mm over an alphabet of size qq as subsets of the vertex set of the Hamming graph Γ=H(m,q)\Gamma=H(m,q). A code for which there exists an automorphism group X≤Aut(Γ)X\leq Aut(\Gamma) that acts transitively on the code and on its set of neighbours is said to be neighbour transitive, and were introduced by the authors as a group theoretic analogue to the assumption that single errors are equally likely over a noisy channel. Examples of neighbour transitive codes include the Hamming codes, various Golay codes, certain Hadamard codes, the Nordstrom Robinson codes, certain permutation codes and frequency permutation arrays, which have connections with powerline communication, and also completely transitive codes, a subfamily of completely regular codes, which themselves have attracted a lot of interest. It is known that for any neighbour transitive code with minimum distance at least 3 there exists a subgroup of XX that has a 22-transitive action on the alphabet over which the code is defined. Therefore, by Burnside's theorem, this action is of almost simple or affine type. If the action is of almost simple type, we say the code is alphabet almost simple neighbour transitive. In this paper we characterise a family of neighbour transitive codes, in particular, the alphabet almost simple neighbour transitive codes with minimum distance at least 33, and for which the group XX has a non-trivial intersection with the base group of Aut(Γ)Aut(\Gamma). If CC is such a code, we show that, up to equivalence, there exists a subcode Δ\Delta that can be completely described, and that either C=ΔC=\Delta, or Δ\Delta is a neighbour transitive frequency permutation array and CC is the disjoint union of XX-translates of Δ\Delta. We also prove that any finite group can be identified in a natural way with a neighbour transitive code.Comment: 30 Page

    Permutation codes with specified packing radius

    No full text
    Most papers on permutation codes have concentrated on the minimum Hamming distance of the code. An (n, d) permutation code (or permutation array) is simply a set of permutations on n elements in which the Hamming distance between any pair of distinct permutations (or codewords) is at least d. An (n, 2e + 1) or (n, 2e + 2) permutation code is able to correct up to e errors. These codes have a potential application to powerline communications. It is known that in an (n, 2e) permutation code the balls of radius e surrounding the codewords may all be pairwise disjoint, but usually some overlap. Thus an (n, 2e) permutation code is generally unable to correct e errors using nearest neighbour decoding. On the other hand, if the packing radius of the code is defined as the largest value of e for which the balls of radius e are all pairwise disjoint, a permutation code with packing radius e can be denoted by [n, e]. Such a permutation code can always correct e errors. In this paper it is shown that, in almost all cases considered, the number of codewords in the best [n, e] code found is substantially greater than the largest number of codewords in the best known (n, 2e + 1) code. Thus the packing radius more accurately specifies the requirement for an e-error-correcting permutation code than does the minimum Hamming distance. The techniques used include construction by automorphism group and several variations of clique search They are enhanced by two theoretical results which make the computations feasible
    corecore