38 research outputs found

    Diffusion Driven Label Fusion for White Matter Multi-Atlas Segmentation

    Get PDF
    International audienceWhite matter pathologies such as tumors or traumatic brain injury disrupt the structure of white matter. These disruptions hamper the inference of affected pathways using tractography. A way to overcome this is to use a label fusion technique. Label fusion aims to infer the localization of the brain structure of a subject from its localization in a group of control subjects. The most common technique is known as the voting rule, where a structure is said to be present in a voxel if it's present in the majority of the voting subjects. Furthermore, this can be improved by weighting each vote by the similarity between the T1 of each voting subject and the subject to be inferred. However, these techniques only relay in the spatial localization of the structures. In this work, we introduce a way to weight the vote of each subject based on how the voted pathway is supported by the test subject's diffusion data. This is, if the diffusion data of the test subject is consistent with the direction of the voted pathway, the vote has a higher weight. We show that adding dMRI to the label fusion process achieves a similar number of true positives than the voting technique, with a 60% less of false positives. However, this incurs in a trade-off of a 40% false negatives

    SEGMENTATION OF PROSTATE IN MRI IMAGES USING GRAPH-CUT SEGMENTATION

    Get PDF
    Prostate cancer has become one of the highest cancer-related death cases over the last few years in the West. This cancer affects only men. Statistics has shown that there is a big rise in the number of estimation cases over the last years. The increase in the number of these cases leads to accurate diagnoses at early stages enabling early intervention. Numbers of clinical practices are also introduced. One of these practices is the use of the Magnetic Resonance Imaging (MRI) scanner. However, images produced show a poor contrast of soft tissue between the surrounding tissue and prostate gland. This article aims to use the Graph-cut as the method segmentation of images. Index Terms – Prostate Gland, MRI scanner, MATLA

    Concatenated spatially-localized random forests for hippocampus labeling in adult and infant MR brain images

    Get PDF
    Automatic labeling of the hippocampus in brain MR images is highly demanded, as it has played an important role in imaging-based brain studies. However, accurate labeling of the hippocampus is still challenging, partially due to the ambiguous intensity boundary between the hippocampus and surrounding anatomies. In this paper, we propose a concatenated set of spatially-localized random forests for multi-atlas-based hippocampus labeling of adult/infant brain MR images. The contribution in our work is two-fold. First, each forest classifier is trained to label just a specific sub-region of the hippocampus, thus enhancing the labeling accuracy. Second, a novel forest selection strategy is proposed, such that each voxel in the test image can automatically select a set of optimal forests, and then dynamically fuses their respective outputs for determining the final label. Furthermore, we enhance the spatially-localized random forests with the aid of the auto-context strategy. In this way, our proposed learning framework can gradually refine the tentative labeling result for better performance. Experiments show that, regarding the large datasets of both adult and infant brain MR images, our method owns satisfactory scalability by segmenting the hippocampus accurately and efficiently

    Optimized classification predictions with a new index combining machine learning algorithms

    Get PDF
    Voting is a commonly used ensemble method aiming to optimize classification predictions by combining results from individual base classifiers. However, the selection of appropriate classifiers to participate in voting algorithm is currently an open issue. In this study we developed a novel Dissimilarity-Performance (DP) index which incorporates two important criteria for the selection of base classifiers to participate in voting: their differential response in classification (dissimilarity) when combined in triads and their individual performance. To develop this empirical index we firstly used a range of different datasets to evaluate the relationship between voting results and measures of dissimilarity among classifiers of different types (rules, trees, lazy classifiers, functions and Bayes). Secondly, we computed the combined effect on voting performance of classifiers with different individual performance and/or diverse results in the voting performance. Our DP index was able to rank the classifier combinations according to their voting performance and thus to suggest the optimal combination. The proposed index is recommended for individual machine learning users as a preliminary tool to identify which classifiers to combine in order to achieve more accurate classification predictions avoiding computer intensive and time-consuming search

    Cerebral atrophy in mild cognitive impairment and Alzheimer disease: rates and acceleration.

    Get PDF
    OBJECTIVE: To quantify the regional and global cerebral atrophy rates and assess acceleration rates in healthy controls, subjects with mild cognitive impairment (MCI), and subjects with mild Alzheimer disease (AD). METHODS: Using 0-, 6-, 12-, 18-, 24-, and 36-month MRI scans of controls and subjects with MCI and AD from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database, we calculated volume change of whole brain, hippocampus, and ventricles between all pairs of scans using the boundary shift integral. RESULTS: We found no evidence of acceleration in whole-brain atrophy rates in any group. There was evidence that hippocampal atrophy rates in MCI subjects accelerate by 0.22%/year2 on average (p = 0.037). There was evidence of acceleration in rates of ventricular enlargement in subjects with MCI (p = 0.001) and AD (p < 0.001), with rates estimated to increase by 0.27 mL/year2 (95% confidence interval 0.12, 0.43) and 0.88 mL/year2 (95% confidence interval 0.47, 1.29), respectively. A post hoc analysis suggested that the acceleration of hippocampal loss in MCI subjects was mainly driven by the MCI subjects that were observed to progress to clinical AD within 3 years of baseline, with this group showing hippocampal atrophy rate acceleration of 0.50%/year2 (p = 0.003). CONCLUSIONS: The small acceleration rates suggest a long period of transition to the pathologic losses seen in clinical AD. The acceleration in hippocampal atrophy rates in MCI subjects in the ADNI seems to be driven by those MCI subjects who concurrently progressed to a clinical diagnosis of AD

    Coupled non-parametric shape and moment-based inter-shape pose priors for multiple basal ganglia structure segmentation

    Get PDF
    This paper presents a new active contour-based, statistical method for simultaneous volumetric segmentation of multiple subcortical structures in the brain. In biological tissues, such as the human brain, neighboring structures exhibit co-dependencies which can aid in segmentation, if properly analyzed and modeled. Motivated by this observation, we formulate the segmentation problem as a maximum a posteriori estimation problem, in which we incorporate statistical prior models on the shapes and inter-shape (relative) poses of the structures of interest. This provides a principled mechanism to bring high level information about the shapes and the relationships of anatomical structures into the segmentation problem. For learning the prior densities we use a nonparametric multivariate kernel density estimation framework. We combine these priors with data in a variational framework and develop an active contour-based iterative segmentation algorithm. We test our method on the problem of volumetric segmentation of basal ganglia structures in magnetic resonance (MR) images. We present a set of 2D and 3D experiments as well as a quantitative performance analysis. In addition, we perform a comparison to several existent segmentation methods and demonstrate the improvements provided by our approach in terms of segmentation accuracy

    A transversal approach for patch-based label fusion via matrix completion

    Get PDF
    Recently, multi-atlas patch-based label fusion has received an increasing interest in the medical image segmentation field. After warping the anatomical labels from the atlas images to the target image by registration, label fusion is the key step to determine the latent label for each target image point. Two popular types of patch-based label fusion approaches are (1) reconstruction-based approaches that compute the target labels as a weighted average of atlas labels, where the weights are derived by reconstructing the target image patch using the atlas image patches; and (2) classification-based approaches that determine the target label as a mapping of the target image patch, where the mapping function is often learned using the atlas image patches and their corresponding labels. Both approaches have their advantages and limitations. In this paper, we propose a novel patch-based label fusion method to combine the above two types of approaches via matrix completion (and hence, we call it transversal). As we will show, our method overcomes the individual limitations of both reconstruction-based and classification-based approaches. Since the labeling confidences may vary across the target image points, we further propose a sequential labeling framework that first labels the highly confident points and then gradually labels more challenging points in an iterative manner, guided by the label information determined in the previous iterations. We demonstrate the performance of our novel label fusion method in segmenting the hippocampus in the ADNI dataset, subcortical and limbic structures in the LONI dataset, and mid-brain structures in the SATA dataset. We achieve more accurate segmentation results than both reconstruction-based and classification-based approaches. Our label fusion method is also ranked 1st in the online SATA Multi-Atlas Segmentation Challenge

    LINKS: Learning-based multi-source IntegratioN frameworK for Segmentation of infant brain images

    Get PDF
    Segmentation of infant brain MR images is challenging due to insufficient image quality, severe partial volume effect, and ongoing maturation and myelination processes. In the first year of life, the image contrast between white and gray matters of the infant brain undergoes dramatic changes. In particular, the image contrast is inverted around 6-8 months of age, and the white and gray matter tissues are isointense in both T1- and T2-weighted MR images and thus exhibit the extremely low tissue contrast, which poses significant challenges for automated segmentation. Most previous studies used multi-atlas label fusion strategy, which has the limitation of equally treating the different available image modalities and is often computationally expensive. To cope with these limitations, in this paper, we propose a novel learning-based multi-source integration framework for segmentation of infant brain images. Specifically, we employ the random forest technique to effectively integrate features from multi-source images together for tissue segmentation. Here, the multi-source images include initially only the multi-modality (T1, T2 and FA) images and later also the iteratively estimated and refined tissue probability maps of gray matter, white matter, and cerebrospinal fluid. Experimental results on 119 infants show that the proposed method achieves better performance than other state-of-the-art automated segmentation methods. Further validation was performed on the MICCAI grand challenge and the proposed method was ranked top among all competing methods. Moreover, to alleviate the possible anatomical errors, our method can also be combined with an anatomically-constrained multi-atlas labeling approach for further improving the segmentation accuracy
    corecore