
Concatenated Spatially-localized Random Forests for 
Hippocampus Labeling in Adult and Infant MR Brain Images

Lichi Zhanga, Qian Wanga, Yaozong Gaob,c, Guorong Wub, and Dinggang Shenb,d

aMed-X Research Institute, School of Biomedical Engineering, Shanghai Jiao Tong University

bDepartment of Radiology and BRIC, University of North Carolina at Chapel Hill

cDepartment of Computer Science, University of North Carolina at Chapel Hill

dDepartment of Brain and Cognitive Engineering, Korea University, Seoul 02841, Republic of 
Korea

Abstract

Automatic labeling of the hippocampus in brain MR images is highly demanded, as it has played 

an important role in imaging-based brain studies. However, accurate labeling of the hippocampus 

is still challenging, partially due to the ambiguous intensity boundary between the hippocampus 

and surrounding anatomies. In this paper, we propose a concatenated set of spatially-localized 

random forests for multi-atlas-based hippocampus labeling of adult/infant brain MR images. The 

contribution in our work is two-fold. First, each forest classifier is trained to label just a specific 

sub-region of the hippocampus, thus enhancing the labeling accuracy. Second, a novel forest 

selection strategy is proposed, such that each voxel in the test image can automatically select a set 

of optimal forests, and then dynamically fuses their respective outputs for determining the final 

label. Furthermore, we enhance the spatially-localized random forests with the aid of the auto-

context strategy. In this way, our proposed learning framework can gradually refine the tentative 

labeling result for better performance. Experiments show that, regarding the large datasets of both 

adult and infant brain MR images, our method owns satisfactory scalability by segmenting the 

hippocampus accurately and efficiently.
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1 Introduction

The hippocampus is known as an important brain structure associated with learning and 

memory [1–4]. The morphological analysis of the hippocampus is a critical step for 
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investigating early brain development [5]. Also, the hippocampus has been found as an early 

biomarker for many neural diseases including Alzheimer’s disease, schizophrenia, and 

epilepsy [6, 7]. Therefore, accurate labeling of the hippocampus in Magnetic Resonance 

(MR) brain images has become a task of pivotal importance to medical image analysis and 

the related translational medical studies [8, 9].

The automatic methods to accurately and robustly label anatomical regions-of-interest 

(ROIs) in medical images are highly desirable [10–12]. For example, it often takes up to two 

hours to manually segment the hippocampus [13], which is infeasible when labeling a large 

set of subjects. The main challenge in automatic segmentation of the hippocampus is that the 

intensities in hippocampus are highly similar to those in the surrounding structures, such as 

amygdala, caudate nucleus, and thalamus [14]. Besides, hippocampal edges are not always 

visible in the MR images, i.e., a large part of the boundary between the hippocampus and the 

amygdala is usually invisible [9]. The situation becomes much worse for the cases of infant 

brain images, where imaging quality is relatively poor with blur intensity boundary between 

the hippocampus and the surrounding structures [5]. Therefore, it is necessary to utilize prior 

knowledge for labeling the hippocampus in MR brain images. Note that the prior knowledge 

here often includes the global position in the brain, the relative position to the neighbor 

structures, and also the general hippocampus shape [15].

Many automatic labeling methods have been developed to address the above challenges in 

MR brain segmentation, by learning from the training images and their manually labeled 

maps, which can be regarded as atlases [16]. There are many different ways of using atlas 

information for labeling the test images. For example, Carmichael et al. [13] implemented 

image labeling by first introducing a common atlas that is constructed using a single image 

[17, 18], or a group of aligned training images [16]. Then, they registered the intensity 

image of common atlas to the test image, and warped the label map of the common atlas to 

the test image for segmentation. On the other hand, FreeSurfer toolkit [14] constructed a 

probability atlas for the whole brain segmentation by applying the label fusion process to a 

group of images.

Multi-atlas label propagation (MALP) methods have become popular for MR brain labeling 

recently. The MALP methods intend to use multiple atlases to improve the overall 

segmentation reliability, compared to the use of a single atlas [19–23]. There are generally 

two steps in the MALP methods. First, each atlas is spatially aligned to the test image 

through a certain image registration approach [24–27]. Second, a label fusion method is used 

to merge the warped atlas labels for final segmentation of the test image. These two steps 

allow the MALP methods to account for high inter-subject variability between the atlas 

images and the test image, and produce reliable label estimation for the test image through 

sophisticated label fusion. Recently, random forest [28–32] has been widely applied to 

image segmentation [33] and pose recognition [34], and has been proven to be fast and 

accurate [35]. More detailed literature survey of MALP and the random forest techniques 

can be found in Section 2.1 and Section 2.3, respectively.

In this paper, we develop a concatenated learning framework that can achieve accurate 

labeling for the hippocampus in both adult and infant brain images. In particular, we propose 
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to exploit the high variation across different sub-regions of the hippocampus, and then train 

a set of random forest classifiers specifically for different hippocampal sub-regions. To our 

best knowledge, there are no existing works that intended to label hippocampal region using 

the above-described strategy. The main contribution of our method is two-fold. First, each 

forest is trained for one specific sub-region of the hippocampus, where each sub-region is 

the ensemble of patches with similar appearances. In the experiments, we have found that, 

for small ROI such as hippocampus, the patches grouped together with similar appearances 

are often spatially close to each other. Thus, we can regard that each cluster of patches 

corresponds to a certain sub-region in the hippocampus, and each trained classifier could 

have high labeling accuracy for its corresponding sub-region. Second, a novel forest 

selection strategy is also introduced, such that any voxel in the test image can find its own 

set of optimal forests to determine the label in the testing stage. Specifically, our forest 

selection strategy is implemented by comparing the test voxel’s patch with the training 

patches used to build respective forests. Figure 1 illustrates the main idea of how to 

implement our spatially-localized random forests. This can also guarantee the scalability of 

our learning framework, i.e., the forest selection strategy can prevent certain issues when a 

large set of training atlases are used. Furthermore, we also enhance these spatially-localized 

random forests by the auto-context strategy [36]. In this way, the higher layer of spatially-

localized random forests can extract context features from the outputs of the lower layer of 

spatially-localized random forests, for helping gradually refine the labeling result for better 

accuracy.

The rest of this paper is organized as follows. In Section 2 we survey the literature related to 

this work, such as the MALP methods, atlas selection, and random forest. In Section 3 we 

provide details of the proposed spatially-localized random forests for hippocampus 

segmentation. In Section 4 we demonstrate the segmentation capability of the proposed 

method on both adult and infant MR brain images, and further compare its performance with 

the conventional methods. Finally, we conclude our work with discussions in Section 5.

2 Related Works

2.1 The MALP Methods

There are two main directions in the development of the MALP methods, to which the 

components of registration and label fusion are fundamentally important. For example, to 

improve the performance in the registration process, Jia et al. [24] proposed the iterative 

multi-atlas-based multi-image segmentation (MABMIS) approach following a sophisticated 

tree-based groupwise registration scheme. Wolz et al. [37] introduced the LEAP method 

which constructed an image manifold to embed all training and test images according to 

their in-between similarities. The registration task was only implemented between similar 

training images and test images, such that high labeling reliability could be achieved.

There are also some efforts to improve the component of label fusion in the MALP methods, 

among which the weighted voting strategy is very popular. The weighted voting strategy 

often computes the similarities between the training atlas images and the to-be-labeled test 

image first. The similarities are further considered as weights, which gauge the contributions 

from individual training atlases to the test image under consideration. As the training atlases 
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with higher weights are more similar to the test image and thus contain more relevant 

labeling information, the subsequent label fusion process can yield a highly accurate 

labeling result by fusing the contributions from the atlases adaptively [20, 38–41]. In 

addition, Warfield et al. [42] introduced the simultaneous truth and performance level 

estimation (STAPLE) method, which included the expectation-maximization (EM) 

technique to evaluate the weight information for label fusion.

Another attempt in the development of the MALP methods is the non-local patch-based 

strategy, which was introduced by Coupé et al. [43] and Rousseau et al. [44]. This strategy 

has gained momentum due to its capability in quantifying complex variation of image 

appearances. Inspired by the non-local mean denoising filter [45], the method first extracts 

small volumetric patches along with their in-between similarities. The segmentation is then 

implemented by integrating the labels of the non-local voxels in all training atlases, by 

following their respective patch-based similarities to the voxel under labeling. Since the non-

local patch-based labeling does not require precise registration between the training and the 

testing images, the challenges in the multi-atlas-based segmentation are reduced 

substantially [43, 46–49]. Various non-local patch-based methods have been developed, 

including the use of sparsity [50] and label-specific k-NN search structure [48]. Recently, 

Wu et al. [51] extended the work in [50], where a generative probability model was 

introduced to segment the test image based on the observations of registered training images. 

In addition, Asman and Landman [52] improved the STAPLE method by reformulating this 

statistical fusion method within a non-local mean perspective.

2.2 Atlas selection

As shown in the previous section, the MALP method utilizes the information from multiple 

atlases to implement the segmentation work. Therefore, its performance is much dependent 

on the collection of training atlases. First, the computation cost becomes demanding when a 

large set of training atlases are used, which is often necessary for high labeling accuracy. For 

example, the current typical non-local label fusion methods require 3–5 hours per single 

labeling process on a dataset with 15 subjects [52, 53]. The situation becomes worse when 

the scale of the study becomes larger, such as the Alzheimer’s Disease Neuroimaging 

Initiative (ADNI) dataset with thousands of subjects. Second, certain atlases can have high 

appearance/morphological variations with the test image, and thus may contribute 

misleading information to label the specific test image. The overall labeling performance can 

be undermined.

To address the aforementioned issues, atlas selection is important. It is shown in Aljabar et 
al. [19] that the use of atlas selection can significantly improve labeling performance. 

Generally, the intensity-based similarity (i.e., the sum of squared differences of intensities) 

or normalized mutual information [54] is used as the metric for atlas selection. Other 

attempts in atlas selection focus on using the manifold space to embed all images, instead of 

counting on their Euclidean distances [37, 55]. More references on atlas selection can also 

be found in Rohlfing et al. [40] and Wu et al. [56].
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2.3 Random Forest

The main advantage of using random forest is that it can efficiently handle a large number of 

images, which is important for MALP image labeling. For example, Zikic et al. [57] 

intended to apply random forest to automatically label high-grade gliomas from multi-

channel MR images. Later they proposed the atlas forest strategy [58], which encoded each 

individual atlas and its corresponding label map via random forest. Their purpose was to 

reduce the computational cost, and also to improve the efficiency for experiments, especially 

when following the leave-one-out validation setting. Experimental results indicated that the 

performance was favorable compared to the alternatives, e.g., the non-local patch-based 

method [45, 46].

The major contribution of random forest is its uniform bagging strategy [28], i.e., each tree 

is trained on a subset of training samples with only a subset of features that are randomly 

selected from a large feature pool. Thus, the bagging strategy can inject randomness during 

the learning process, which helps avoid over-fitting and improves robustness of label 

prediction. However, the drawback of uniform bagging strategy is that each tree is trained 

using samples from the whole ROIs of all training images. That is, all trees have similar 

labeling capabilities in general, as their training samples are generated in a similar (though 

random) way. Since the shapes and the anatomies of different atlas images are quite diverse 

in the training set, we argue that each tree (or the forest containing multiple trees) can be 

trained for a specific subset of the atlas information, where the internal anatomical variation 

is low. In the testing stage, with a proper selection upon the trained classifiers for each test 

image, the overall labeling performance can be further improved.

Lombaert et al. [59] introduced the Laplacian forest, in which the training images are re-

organized and embedded into a low-dimensional manifold. Similar images are thus grouped 

together. In the training stage, each tree is learned using only a specific group of similar 

atlases following a guided bagging approach. The strategy for tree selection for the given 

test image was also proposed. The method was demonstrated experimentally to yield higher 

training efficiency and segmentation accuracy. However, the Laplacian forest considers only 

the variability within the entire image space, but neglects the variability across different sub-

regions of the ROI (such as hippocampus). For the case of the hippocampus segmentation, 

the target region is small, compared to the whole brain image. Therefore, the global 

differences between whole brain images do not represent the shape differences of the 

hippocampus across subjects, thus making it hard to select the optimal forests/classifiers for 

hippocampus segmentation in the test image.

3 Methods

In this section, we propose a concatenated spatially-localized learning framework, based on 

random forests, to address the variation of appearances across different sub-regions of the 

hippocampus in the MR brain images. In particular, we train a set of spatially-localized 

random forests for targeting different sub-regions of the hippocampus. Then, in the 

application stage, each voxel in the test image selects a subset of optimal forests/classifiers 

for determining its label. To further improve the labeling performance, we further iteratively 

enhance each spatially-localized random forest with the auto-context strategy [36]. In this 
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concatenated learning framework, we construct the higher layer of spatially-localized 

random forests by also partially using the outputs of their respective forests in the lower 

layer. As the layer increases, the labeling results can be gradually refined.

Figure 2 presents the flowchart of the proposed framework, which consists of the training 

and the testing stages. The details of the algorithm in all steps are given in the subsequent 

sections. In the training stage, we commence by implementing the 3D cubic patch extraction 
from the training atlases in the bottom layer, as detailed in Section 3.1. Then, voxels with 

similar patch-based appearances are clustered together. Next, we consider all patches in the 

same cluster to form a specific sub-region. Note that the shapes of the same sub-region 

might vary across different training atlases. The strategy of patch clustering is detailed in 

Section 3.2.

With the partition of sub-regions, we then randomly select voxel samples from the training 

atlases. Their features are computed accordingly. The strategy of feature computation is 

detailed in Section 3.3. As stated previously, each random forest is trained by using only 

samples extracted from its corresponding sub-region in all the training atlases. The forest 
training process generally follows the standard random forest technique with details in 

Section 3.4.

In the layers upper than the bottom one, the sub-regions are identical to those decided early. 

However, by following the auto-context strategy, the classifiers in the second layer and 

above are trained using not only the visual features from the original intensity images but 
also the context features extracted from the outputs of the lower-layer classifiers. The feature 
extraction of both visual and context features is also detailed in Section 3.3.

In the testing stage, for each voxel in the test image, we first extract the corresponding patch 

centered at the test voxel. Then, we implement a forest selection strategy to find a subset of 

classifiers that are the most appropriate to label the test voxel under consideration. By 

following the trained hierarchy, the labeling results are gradually refined through all layers. 

The output of the upmost layer gives the labeling result for the specific test voxel under 

consideration. Details of the segmentation process with the forest selection technique are 

presented in Section 3.5.

3.1 Patch Extraction

In the training stage, we commence by randomly extracting numerous patches from all the 

training atlases. Denote the training atlas set as A, which consists of n atlases {Ai = (Ii, Li)|i 
= 1,...,n}. Each atlas such as the i-th atlas Ai includes an intensity image Ii and a label image 

Li. In each intensity image, we select m patches. Thus, the total number of the 3D patches is 

m × n. The set of patches is denoted as P = {p1, p2,...,pm×n}.

There are several restrictions in the patch extraction process. First, the extracted patches 

should reflect the common appearance as well as the variation in the neighborhood of the 

targeting ROI. Therefore, the locations of patches are not selected from the whole brain 

image, but only from a small region that covers the hippocampus with certain margins. 

Second, we assign higher priority for choosing patches close to the hippocampal boundaries. 
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In this way, we can get more boundary information from the selected patches. Third, large 

overlapping between any pair of selected patches should be avoided. Otherwise, the selected 

patches will contain highly-redundant information, which may affect the subsequent 

learning process.

To meet the above restrictions during the patch extraction process, we adopt the importance 

sampling strategy [60]. That is, we first extract the hippocampal boundaries in each training 

atlas and then smooth boundaries with a Gaussian kernel. The resulted probability map 

records the importance of individual voxels/patches to be selected for training, as the voxels 

closer to the hippocampal boundaries are more likely to be selected. Also, when a certain 

patch is chosen, the corresponding patch in the probability map will be marked and the 

respective probability values will be reduced. This adjustment can reduce the chance of 

selecting future patches in the neighborhood, thus preventing large overlap between 

extracted patches.

3.2 Patch Clustering

Next, we cluster the selected patches to determine the partition of the sub-regions. The 

clustering process is based on the intensity similarity between patches, defined by the mean 

of squared intensity differences as below, i.e., for two patches pi and pj:

(1)

where x is the voxel in pi and pj. When similarities between all pairs of patches are obtained, 

we can obtain an (m × n) × (m × n) affinity matrix. The patches can then be clustered and 

used to determine sub-regions that correspond to respective clusters. Specifically, we choose 

the affinity propagation method [61] for clustering the extracted patches as it can 

automatically find the number of clusters given the input affinity matrix.

The affinity propagation method follows an iterative strategy to find the optimal exemplar 

nodes (corresponding to certain extracted patches) that best represent the overall data points. 

Then the exemplars are used as the representatives for their corresponding clusters. The 

affinity propagation method commences by initializing a preference value for each node in 

the affinity matrix, regarded as its likelihood of being chosen as the exemplar. State 

succinctly, all nodes in the initialization step are assumed to be exemplar candidates. In each 

iteration, the affinity propagation method intends to pass two messages between the 

exemplar candidates and other nodes, namely the responsibility and the availability. The 

clustering process finishes when all messages are converged to be fixed, as several 

exemplars are selected to represent individual clusters in the final. Details of the affinity 

propagation method can be found in Frey and Dueck [61]. When similar patches are grouped 

together, each cluster can be used to train its own forest, which can be then used for labeling 

the specific sub-region in the test image.
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3.3 Haar-like Feature Computation

Given numerous voxel samples that are randomly selected from the training atlases, we need 

compute their corresponding features before training the classifiers. The numbers of samples 

extracted from different training atlases are generally identical. In the bottom layer, only the 

3D Haar-like visual features are computed from the intensity images. In the second and 

upper layers, both visual features and context features are computed. Note that the context 

features are computed from the output maps of the lower-layer forests. We will later 

introduce the strategy to obtain the segmentation outputs from a certain layer in our 

concatenated learning framework (c.f. in Section 3.5). Visual features and context features 

are computed from two different sources in the set Q = {Q1, Q2}. By following the auto-

context strategy, we combine these two different types of features together to train the 

classifiers. It is worth noting that the numbers of features extracted from the two sources are 

the same, implying that these two types of features are treated equally in our 

implementation.

In this paper, we apply the 3D Haar-like operators to extract visual and context features due 

to the computational efficiency and simplicity [62]. For the cubic region R centered at 

sampled voxel x, we randomly sample two cubic areas R1 and R2 that are within R. State 

succinctly, the sizes of the cubic regions are randomly chosen from an arbitrary range, which 

in our work is {1,3,5} in voxels. We follow two ways to compute the Haar-like features: (1) 

the local mean intensity in R1, or (2) the difference of local mean intensity in R1 and R2 

[63]. The Haar-like feature operator can be thus given as follows [64]:

(2)

where fHarr(x, Ii) is a Haar-like feature for the voxel x in the source data Qi, and the 

parameter δ is 0 or 1 which is used to determine the selection of one or two cubic regions. 

Note that the parameter values described above are randomly decided during the training 

stage, which are stored for future use in the testing stage. In this way, we can avoid the 

costly computation of the entire feature pool and then sample features from the pool 

efficiently.

3.4 Forest Training

In this section, we present details on training the forest for patch labeling by using the 

features obtained in Section 3.3. As stated in Section 2.3, the random forest F is an ensemble 

of b binary decision trees {T1,T2,...,Tb}. In each tree, only a subset of features and samples 

are selected for training. It is worth noting that all trees belonging to the same forest are 

trained using an identical set of samples in our work due to computation simplicity. Also 

note that the strategy for training the classifier is irrelevant whether the context features are 

included in the input samples. Therefore, the following descriptions of classifier training 

also apply to both the forests in the bottom and the upper layers of the hierarchy.

The binary decision tree is a tree-structured classifier containing two types of nodes, i.e., the 

internal node and the leaf node [31]. Every internal node has a split function to divide the 
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training sets into its left or right child node based on one feature and its threshold setting. 

The split function intends to maximize the information gain of splitting the training data 

[28]. On the other hand, the leaf nodes store the hippocampus label predictor.

In the training stage, given an input voxel sample x, the decision tree Ti can produce a label 

predictor g(h|f(x, Q),Ti). Here, h is the hippocampus label, and f(x, Q) is the high-

dimensional Haar-like feature vector computed from the source set Q in Section 3.3. The 

tree is trained as follows: We commence by constructing its root (internal) node, where its 

split function is optimized to split the training samples into two subsets, which are then 

placed in the left and right children (internal) nodes. The settings for the optimal split 

function are stored for future use in the testing stage. Next, the tree keeps growing by 

recursively computing the split function in each of the child (internal) nodes and further 

dividing the samples, until either the maximum tree depth is reached, or the number of 

training samples belonging to the internal node is too small to divide. Here, the leaf nodes 

are appended, whose probability results are computed by first counting the labels of all 

training samples in each leaf node l and then associating it with the empirical distribution 

over its label predictor gl(h|f(x,Q),Ti) [64].

3.5 Forest Selection and Fusion

In the testing stage, for each to-be-labeled voxel x in the test image I′, we first follow the 

forest selection strategy to find a subset of optimal forests/classifiers trained for different 

sub-regions. Then, each selected classifier is applied to produce a probability value, and 

results of all selected classifiers are merged to give the final estimation for the test voxel x.

The strategy of forest selection is presented as follows. As mentioned in Section 3.1, the set 

of patches collected from all the training images is P = {p1, p2,...,pm×n}. We commence by 

extracting the patch px centered at the voxel x from the test image I′. Then, we compare the 

patch px with those in P by using Equation (1), and obtain a corresponding set of 

comparison results Sx = {s1, s2,...,sm×n}. Next, we select a group of the patches Px ⊂ P 
whose values in Sx are highest. After patch clustering process introduced in Section 3.2, 

each sub-region has its corresponding set of patches . The novel metric 

W(x, Pi) for the test voxel x is thus given as follows:

(3)

where |·| calculates the size of the set. When the clusters with top W scores are selected, the 

set of their corresponding trained forests can be chosen to label the test voxel x. Denote the 

set of selected forests as F = {F1, F2,...,Fq}, the strategy of label fusion is given as follows. 

We commence by estimating the probability results from all the trained trees 

{ } in each forest Fj. The test voxel x is first pushed separately into their root 

(internal) nodes. Guided by the learned splitting functions in the training stage, for each tree 

 the voxel arrives at a certain leaf node, and the corresponding probability result is thus 
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obtained as . The overall probability from the spatially-localized forest 

can be estimated by averaging the obtained probability results from all the trees, i.e.,

(4)

The final estimation can be measured by implementing a weighted averaging of the 

produced probability values, where the weight is given by the score value W. The equation 

is written as:

(5)

4 Experiments

In this section, we evaluate the proposed framework in labeling the hippocampus from MR 

brain images. We use two datasets, including (1) some selected images from Alzheimer’s 

Disease Neuroimaging Initiative (ADNI)1 [65] and (2) the infant brain images. Our 

experiments aim to demonstrate the validity of proposed framework in both adult and infant 

brain images, respectively.

We perform cross-validation to both datasets, to show the robustness of the proposed 

framework. It is also worth noting that the settings for the classifier training and testing are 

generally identical in all the experiments. Specifically, there are 20 trees trained in each 

random forest. The maximum tree depth is 20. Each leaf node has a minimum of 8 samples. 

The number of 3D Haar-like features used for each tree is 2000, which include both visual 

and context features. The size of the cubic region used to compute Haar-like features is 

11mm ×11mm×11mm. Also, in the patch extraction process described in Section 3.1, we 

extract 150 patches from each training image. In the patch clustering process, the preference 

parameter for affinity propagation method is set by following the recommendance in [61]. In 

the testing stage, for each voxel in the test image, we set that only 22% of the forests (with 

the highest W scores) are selected for segmentation. Experiments show that the 

configurations presented above can produce reliable labeling results for both datasets.

We used the standard preprocessing procedure to both ADNI and infant images, by 

following [43] to ensure the validity of the estimation. Besides, the ITK1-based histogram 

matching program was also applied to both data independently. All images were rescaled to 

the intensity range [0, 255]. To reduce the computational complexity, for each input testing 

image, only the masked region is considered for labeling. To acquire the mask, we first 

register all the label maps in the training atlases to the space of the testing image, and then 

compute the union of all the warped label maps as the mask. It has proven in the experiment 

1http://adni.loni.ucla.edu
1http://www.itk.org
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that the obtained mask can completely cover the entire hippocampus ROI for further 

estimation.

Note that we have constructed the three-layer hierarchy for experiments of both ADNI and 

infant datasets. This is determined by balancing between the overall labeling accuracy and 

time cost. Experiments also show that the three-layer hierarchy yields satisfactory results.

4.1 ADNI Dataset

The first experiment is to apply the proposed framework to the ADNI dataset which provides 

a large number of adult brain MR images, along with the annotated left and right 

hippocampi [65]. We have randomly selected 64 ADNI images from the normal control 

(NC), mild cognitive impairment (MCI), and Alzheimer’s disease (AD) groups of subjects. 

Here we applied 8-fold cross validation to evaluate the validity of the propose framework. 

State succinctly, the 64 images are equally divided into 8 folds. In each fold, we select one 

fold for testing, and the rest for training. Note that the numbers of the selected test images in 

each fold are generally identical for the three subject groups (NC, MCI, and AD).

Our goal in this section is to demonstrate the hippocampus labeling performance by our 

concatenated spatially-localized random forest framework. Figure 3 shows one example of 

the sub-region distribution for the left hippocampi in the ADNI dataset. Note that the union 

of the sub-regions is equal to the mask region generated in the preprocessing procedure. It 

can be observed that each sub-region, denoted by different color in the figure, occupies a 

respective part of the hippocampal ROI. Therefore, this partition fits our settings for the 

proposed spatially-localized random forest. Table 1 presents the comparison results between 

the labeling estimates and the groundtruth with the Dice similarity coefficient (DSC) [66]. 

The first column shows the labeling performance when applying the conventional random 

forest technique. The second column shows the results of the sub-region random forest, 

without using auto-context strategy. The third and the fourth columns show the 

performances when applying two and three layers of the sub-region random forests, 

respectively.

Figure 4 presents the box plots to visualize the performances of the three layers, by 

comparion with the conventional random forest method. The left and the right panels 

correspond to the results of the left and the right hippocampi, respectively.

It can be observed that the DSC scores of the higher layer are better than those of the lower 

layers in both hippocampi. Meanwhile, the proposed method is clearly better than the 

conventioal random forest technique. Particularlly, the labeling performance in the top layer 

of the hierarchy has overall 2.46% improvement than the conventaionl random forest 

technique. It is also worth noting that the p-values in the two-tailed paired t-tests between 

any two layers for both the left and the right hippocampi are below 0.05, indicating the 

statistical significant improvement of the proposed framework in labeling the hippocampus 

from adult MR brain images.

Note that when more layers are constructed, the labeling performance converges gradually. 

This property can also be observed in other works using auto-context strategy [67]. It is also 
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worth noting that the average runtime of the labeling process using one layer of the 

hierarchy is ~10 minutes using a standard computer (Intel Core i7-4770K 3.50GHz, 16GB 

RAM). When all three layers are used, it takes 27 minutes as the test image goes through the 

entire hierarchy for its final segmentation in our experiment. Note that the comparable 

runtime performances can also be observed when labeling the infant images, as presented in 

the next section.

4.2 Infant Dataset

In this experiment, we focus on applying the proposed framework to the infant MR brain 

images. The infant images were acquired from a Siemens head-only 3T scanner. There are 

10 subjects participated in the acquisition, each of which has been scanned at 2 weeks, 3 

months, 6 months, and 9 months of the age, respectively. Here, the images acquired in the 

same time point are considered as one dataset, since the appearance diversity across different 

time points is much higher than that across different subjects. The images were acquired 

with 144 sagittal slices using the following parameters: TR/TE = 1900/4.38ms, flip angle = 

150 degrees, resolution=1×1×1mm.

Within each dataset of a specific time point, we adopt the leave-one-out setting due to the 

limited image number. Table 2 shows the comparison results between the estimated labeling 

results and the groundtruth using the DSC. The four rows in the table represent the results of 

four different time points. Also, Figure 5 shows the box plots to compare the detailed 

performances of the proposed framework (with different configurations) and the 

conventional random forest method. Due to the challenges of labeling the hippocampus for 

infant MR brain images as introduced in Section 1, the performance is quite limited using 

the conventional random forest technique. For example, the overall DSC is only 41.22% in 

DSC for four time points. However, it can also be observed that the proposed framework can 

effectively overcome the challanges, as the performance has been greatly improved (>30% 

increase in DSC). This demonstrates the validity of the proposed framework when applied to 

the infant brain images. Also note that the difference between results obtained by the 

conventional random forest method and the proposed method is statistically significant, with 

the p-values in the two-tailed paired t-tests all below 0.05 for the images at each of four 

scanning time points.

There are also alternative methods that focuse on hippocampus labeling of the infant brain 

images, such as the unsupervised deep learning framework proposed by Guo et al. [5]. By 

using the same infant dataset, the hippocampus segmentation results are reported to be 

70.2% in DSC in average. It can therefore be concluded that the proposed framework can 

generally outperform the state-of-the-art methods when labeling the hippocampus in infant 

MR brain images.

5 Conclusion

In this paper, we present a novel concatenated learning framework for hippocampus labeling 

in both adult and infant MR brain images. We propose training spatially-localized random 

forests for specific sub-regions of the hippocampus to achieve better segmentation. In the 

testing stage, we also apply a novel forest selection for each voxel in the test image, such 

Zhang et al. Page 12

Neurocomputing. Author manuscript; available in PMC 2018 March 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



that the test voxel can fuse its label by using the outputs of the selected optimal random 

forests. We further iteratively enhance the proposed spatially-localized random forest by 

following the auto-context strategy. This concatenated framework allows the tentative 

labeling results to be gradually refined, until reaching satisfactory segmentation results in the 

last layer.

In the experiments, we demonstrate the performances of the proposed framework on both 

adult and infant brain MR images. We construct a three-layer framework for our method, 

and compare its labeling performances (from different layers) with the conventional method. 

Our results show that our proposed framework can achieve significant improvement in 

hippocampus labeling, and also owns satisfactory scalability when applied to the datasets 

with large set of atlas images In the future work, we will extend the proposed framework to 

support multi-ROI labeling and apply it to whole brain segmentation.
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Figure 1. 
Illustration of spatially-localized random forests for hippocampus segmentation. The patches 

with similar appearances are grouped together to train a specific local classifier, e.g., patches 

in red are used to train the forest F1, while patches in orange are used to train F2. The forest 

selection strategy is then used to find the optimal forests/classifiers for each voxel in the test 

image.
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Figure 2. 
Schematic illustration of the proposed hippocampus segmentation framework, which 

consists of the training stage (in red) and the testing stage (in blue).
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Figure 3. 
The sub-regions (represented by different colors) established for the left hippocampi in the 

ADNI dataset. Note that the union of these sub-regions is equal to the mask generated in the 

pre-processing procedure.
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Figure 4. 
The box plot for the labeling accuracies of different configurations on the left (yellow) and 

the right (orange) hippocampi from the ADNI dataset. RF is short for random forest.
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Figure 5. 
The box plot for the labeling accuracies of the hippocampus on infant MR brain images of 

four time points.
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Table 1

Quantitative comparison of performances in different configurations when labeling the left and the right 

hippocampi.

Conventional Random Forest

Sub-Region Random Forest

First Layer Second Layer Third Layer

Left Hippo. 84.71±3.48% 85.82±2.47% 86.89±2.36% 87.01±2.28%

Right Hippo. 83.83±4.01% 85.29±2.82% 86.29±2.74% 86.45±2.73%

Overall 84.27±3.75% 85.56±2.65% 86.59±2.55% 86.73±2.51%
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Table 2

Quantitative comparison of performances in different configurations when labeling the left and the right 

hippocampi.

Conventional Random Forest

Sub-Region Random Forest

First Layer Second Layer Third Layer

Two Weeks 48.02±11.61% 54.74±17.11% 66.48±14.31% 67.40±14.18%

Three Months 31.63±8.17% 62.52±16.26% 72.65±8.15% 73.31±7.64%

Six Months 39.43±7.58% 67.44±9.78% 73.58±7.69% 74.01±8.12%

Nine Months 45.79±11.40% 67.39±9.74% 73.91±5.67% 73.50±5.84%

Overall 41.22±9.69% 63.02±13.22% 71.66±8.96% 72.06±8.95%
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