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Abstract

Segmentation of infant brain MR images is challenging due to insufficient image quality, severe 

partial volume effect, and ongoing maturation and myelination processes. In the first year of life, 

the image contrast between white and gray matters of the infant brain undergoes dramatic changes. 

In particular, the image contrast is inverted around 6-8 months of age, and the white and gray 

matter tissues are isointense in both T1- and T2-weighted MR images and thus exhibit the 

extremely low tissue contrast, which poses significant challenges for automated segmentation. 

Most previous studies used multi-atlas label fusion strategy, which has the limitation of equally 

treating the different available image modalities and is often computationally expensive. To cope 

with these limitations, in this paper, we propose a novel learning-based multi-source integration 

framework for segmentation of infant brain images. Specifically, we employ the random forest 

technique to effectively integrate features from multi-source images together for tissue 

segmentation. Here, the multi-source images include initially only the multi-modality (T1, T2 and 

FA) images and later also the iteratively estimated and refined tissue probability maps of gray 

matter, white matter, and cerebrospinal fluid. Experimental results on 119 infants show that the 

proposed method achieves better performance than other state-of-the-art automated segmentation 

methods. Further validation was performed on the MICCAI grand challenge and the proposed 

method was ranked top among all competing methods. Moreover, to alleviate the possible 
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anatomical errors, our method can also be combined with an anatomically-constrained multi-atlas 

labeling approach for further improving the segmentation accuracy.

Keywords

Infant brain images; isointense stage; random forest; multi-modality; context feature; tissue 
segmentation

1 Introduction

The first year of life is the most dynamic phase of the postnatal human brain development, 

with the rapid tissue growth and development of a wide range of cognitive and motor 

functions. Accurate segmentation of infant brain MR images into white matter (WM), gray 

matter (GM), and cerebrospinal fluid (CSF) in this critical phase is of great importance for 

studying the normal and abnormal early brain development (Gilmore et al., 2011; Hanson et 

al., 2013; Li et al., 2014a; Li et al., 2013a; Li et al., 2014b; Li et al., 2013b, 2014c; Li et al., 

2014d; Li et al., 2014e; Lyall et al., 2014; Nie et al., 2012; Nie et al., 2014; Verma et al., 

2005). However, the segmentation of infant brain MRI is challenging due to the reduced 

tissue contrast (Weisenfeld and Warfield, 2009), increased noise, severe partial volume 

effect (Xue et al., 2007), and ongoing white matter myelination (Gui et al., 2012; Weisenfeld 

and Warfield, 2009). In fact, there are three distinct stages in the first-year brain MR images, 

including (1) infantile stage (≤5 months), (2) isointense stage (6-8 months), and (3) early 

adult-like stage (≥9 months). The 2nd row of Fig. 1 shows representative examples of T1 

and T2 images scanned at around 6 months of age. It can be observed that the intensities of 

voxels in gray matter and white matter are in similar ranges (especially in the cortical 

regions), thus leading to the lowest image contrast in the first year and the significant 

difficulty for tissue segmentation. On the other hand, other two stages show a relatively 

good contrast in either T2-weighted MRI (at the infantile stage) or T1-weighted MRI (at the 

early adult-like stage), respectively, as shown in the 1st and 3rd rows of Fig. 1.

In the past several years, many efforts were put into neonatal brain MRI segmentation 

(Anbeek et al., 2008; Gui et al., 2012; Leroy et al., 2011; Merisaari et al., 2009; Wang et al., 

2011; Wang et al., 2012; Wang et al., 2013c; Warfield et al., 2000; Xue et al., 2007), 

prompted by the increasing availability of neonatal images. Most proposed methods are 

atlas-based (Cocosco et al., 2003; Prastawa et al., 2005; Shi et al., 2009; Shi et al., 2011a; 

Song et al., 2007; Warfield et al., 2000; Weisenfeld et al., 2006; Weisenfeld and Warfield, 

2009). An atlas can be generated from manual or automated segmentation of an individual 

image, or a group of images from different individuals (Kuklisova-Murgasova et al., 2011; 

Shi et al., 2011b). As an extension, multi-atlas label fusion (MALF) makes use of multiple 

reference atlases to compensate for the potential biases and errors introduced by using a 

single atlas (Aljabar et al., 2009; Heckemann et al., 2006; Lötjönen et al., 2010; Rohlfing et 

al., 2004; Wang et al., 2013a; Warfield et al., 2004). As briefed in Table 1, such MALF 

methods have recently enjoyed the increased attentions in the infant brain segmentation 

(Srhoj-Egekher et al., 2013; Wang et al., 2014b). However, one limitation of the current 

MALF methods is that they often employ a single modality image for segmentation. For 
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example, Wang et al. (Wang et al., 2014b) utilized 20 atlases from T2-weighted MRI for 

neonatal image segmentation, achieving promising results. However, to better address the 

challenge of segmenting isointense infant images, other modalities such as fractional 

anisotropy (FA) image from diffusion tensor imaging (DTI) could also be utilized to 

improve the segmentation of WM bundles as well as subcortical regions (Wang et al., 

2014a; Yap et al., 2011), as shown in the third column of Fig. 1. However, the previous 

methods involved with multi-modality images usually consider each modality equally, 

which may be not optimal since certain modalities may provide superior guidance for some 

varying local brain regions. Another limitation of the previous methods is that they are often 

computationally expensive (e.g., taking hours as shown in Table 1), due to their requirement 

of nonlinear registrations between atlases and the target image. Moreover, the larger number 

of atlases used, the longer computational time is expected. This disadvantage limits the 

number of atlases that could be utilized by MALF. To this end, some techniques have been 

proposed to reduce the computational time such as employing simple linear registration, 

which is unfortunately often associated with compromised performance (Rousseau et al., 

2011).

To address these limitations, inspired by the pioneering work (Gao and Shen, 2014; Gao et 

al., 2014; Zikic et al., 2013a; Zikic et al., 2014; Zikic et al., 2012), we propose a novel 

Learning-based multi-source IntegratioN frameworK for Segmentation of infant brain 

images (LINKS). The proposed framework is able to integrate information from multi-

source images together for efficient tissue segmentation. Specifically, the multi-source 

images used in our work initially include multi-modality (T1, T2 and FA) images, and later 

also the iteratively estimated and refined tissue probability maps for GM, WM and CSF. As 

a learning-based approach, our framework consists of two stages: training and testing stages. 

In the training stage, we first use the classification forest (Breiman, 2001) to train a multi-

class tissue classifier based on the training subjects with multiple modalities. The trained 

classifier provides the initial tissue probability maps for each training subject. Inspired by 

the auto-context model (Loog and Ginneken, 2006; Tu and Bai, 2010), the estimated tissue 

probability maps are further used as additional input images to train the next classifier, 

which combines the high-level multi-class context features from the estimated tissue 

probability maps with the appearance features from multi-modality images for refining 

tissue classification. By iteratively training the subsequent classifiers based on the updated 

tissue probability maps, we can finally obtain a sequence of classifiers. Similarly, in the 

testing stage, given a target subject, the learned classifiers are sequentially applied to 

iteratively refine the estimation of tissue probability maps by combining multi-modality 

information with the previously-estimated tissue probability maps. Compared to the 

previous multi-atlas label fusion methods for infant brain segmentation (Srhoj-Egekher et 

al., 2013; Wang et al., 2014a; Wang et al., 2014b), the proposed method allows the effective 

integration of multi-source information, i.e., the original multi-modality images and also the 

iteratively updated tissue probability maps, which are very important for optimal 

performance on the segmentation of infant brain images. This is achieved by automatically 

learning the contribution of each source through random forest with the auto-context scheme 

(Zikic et al., 2014; Zikic et al., 2012). In addition, in contrast to the previous multi-atlas 

label fusion methods, which often require nonlinear registrations between the training 
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subjects (used as atlases) and the target subject, our method involves only the linear 

registration, i.e., to ensure the same orientation for all subjects. In our case where the 

orientations of different subjects are similar, even a simple linear registration is skipped.

Validated on 119 infant scans collected from 0-, 3-, 6-, 9- and 12-month-old infants, the 

proposed method has achieved the state-of-the-art accuracy with significantly reduced 

runtime, compared to the previous methods. Further validation has been performed on the 

MICCAI grand challenge, and our method has achieved the best performance among all the 

competing methods. To alleviate possible anatomical errors, our method can also be 

combined with the anatomically-constrained multi-atlas labeling approach (Wang et al., 

2014a) for further improving the segmentation accuracy.

For related work, Han (Han, 2013) first performed the traditional multi-atlas label fusion and 

then employed random forests to refine structure labels at “ambiguous” voxels where labels 

from different atlases do not fully agree. This method has been applied to the segmentation 

of head and neck images with promising results. However, this method still requires 

nonlinear registrations as in MALF. Criminisi et al. proposed a random forest-based method 

for efficient detection and localization of anatomical structures within CT volumes 

(Criminisi et al., 2009). Zikic et al. proposed a novel method based on the random forests for 

automatic segmentation of high-grade gliomas and their subregions from multi-channel MR 

images (Zikic et al., 2012). Similar work was also presented in (Zikic et al., 2013a; Zikic et 

al., 2013b, 2014), in which an atlas forest was introduced and iteratively employed in an 

auto-context scheme for efficient adult brain labeling.

2 Method

2.1 Data and Image Preprocessing

This study has been approved by Institutional Review Board (IRB) and written informed 

consent forms were obtained from all parents. In the training stage, for each time-point (0-, 

3-, 6-, 9-, and 12-months of age), we have 10 training atlases with each having all T1, T2 

and FA modality images. T1- and T2-weighted images were acquired on a Siemens head-

only 3T scanners with a circular polarized head coil. During the scan, infants were asleep, 

unsedated, fitted with ear protection, and their heads were secured in a vacuum-fixation 

device. T1-weighted images were acquired with 144 sagittal slices using parameters: TR/

TE=1900/4.38ms, flip angle=7°, resolution=1×1×1 mm3. T2-weighted images were 

obtained with 64 axial slices: TR/TE=7380/119ms, flip angle=150° and 

resolution=1.25×1.25×1.95 mm3. Diffusion weighted images consist of 60 axial slices: TR/

TE=7680/82ms, resolution=2×2×2 mm3, 42 non-collinear diffusion gradients, and 

b=1000s/mm2. Seven non-diffusion-weighted reference scans were also acquired. The 

diffusion tensor images were reconstructed and the respective FA images were computed. 

Data with moderate or severe motion artifacts was discarded and a rescan was made when 

possible (Blumenthal et al., 2002).

For image preprocessing, T2 images onto were linearly aligned their corresponding T1 

images. FA images were first linearly aligned to T2 images and then propagated to T1 

images. All images were resampled into an isotropic 1×1×1 mm3 resolution. Since those 
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multi-modality images were from the same subject, they shared the same brain anatomy, and 

thus allowed to be accurately aligned with the rigid registration. Afterwards, standard image 

preprocessing steps were performed before segmentation, including skull stripping (Shi et 

al., 2012), intensity inhomogeneity correction (Sled et al., 1998) and histogram matching, 

and removal of the cerebellum and brain stem by using in-house tools. To generate the 

manual segmentations, we first generated an initial reasonable segmentation by using a 

publicly available software iBEAT (Dai et al., 2013)(http://www.nitrc.org/projects/ibeat/). 

Then, manual editing was carefully performed by an experienced rater to correct 

segmentation errors by using ITK-SNAP (Yushkevich et al., 2006) (www.itksnap.org) based 

on T1, T2 and FA images. Since images of the isointense stage (~6 months) are the most 

difficult cases due to their extremely low image contrast between WM and GM in the MR 

images, we will mainly focus on tissue segmentation for the isointense stage. In the 

experiments, we will also validate our method on images scanned at other time-points of the 

first year of life.

2.2 Multi-source Classification with Multi-class Auto-context

In this paper, we formulate the tissue segmentation problem as a tissue classification 

problem. In particular, the random forest (Breiman, 2001), which are inherently suited for 

multi-class problems, is adopted as a multi-class classifier to produce a tissue probability 

map for each tissue type (i.e., WM, GM, CSF) by voxel-wise classification. The random 

forests can effectively handle a large number of training data with high data dimension, 

which allows us to explore a large number of image features to fully capture both local and 

contextual image information. The final segmentation is accomplished by assigning the 

tissue label with the largest probability at each voxel location.

As a supervised learning method, our method consists of training and testing stages. The 

flowchart of training stage is shown in Fig. 2. In the training stage, we will train a sequence 

of classification forests, each with the input of multi-source images/maps. For simplicity, let 

the N be the total number of the training subjects and let the multi-source images/maps 

 be the T1-weighted image, T2-

weighted image, FA image, tissue probability maps of WM, GM and CSF for the i-th 

training subject, respectively. In the first iteration, the classification forest takes only the 

multi-modality images  as input, and learn the image 

appearance features from different modalities for voxel-wise classification. In the later 

iterations, the three tissue probability maps  obtained from 

the previous iteration will act as additional source images. Specifically, high-level multi-

class context features are extracted from three tissue probability maps to assist the 

classification, along with multi-modality images. Since multi-class context features are 

informative about the nearby tissue structures for each voxel, they encode the spatial 

constraints into the classification, thus improving the quality of the estimated tissue 

probability maps, as also demonstrated in Fig. 2. In the following section, we will describe 

our adaption of random forests to the task of infant brain segmentation in details.
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2.3 Random forests

We employ a random forest to determine a class label c ∈ C for a given testing voxel x ∈ Ω, 

based on its high-dimensional feature representation f (x, I), where I is a set of multi-

modality images. The random forest is an ensemble of decision trees, indexed by t ∈ [1, T], 

where T is the total number of trees at each iteration. A decision tree consists of two types of 

nodes, namely internal nodes (non-leaf nodes) and leaf nodes. Each internal node stores a 

split (or decision) function, according to which the incoming data is sent to its left or right 

child node, and each leaf stores the final answer (predictor) (Criminisi et al., 2012). During 

training of the first iteration, each decision tree t will learn a weak class predictor pt (c | f (x, 

I)) by using the multi-modality images I. The training is performed by splitting the training 

voxels at each internal node based on their feature representations and further assigning 

samples to the left and right child nodes for recursive splitting. Specifically, at each internal 

node, to inject the randomness for improved generalization, a sampled subset Θ of all 

possible features is randomly selected (Criminisi et al., 2009; Criminisi et al., 2012). Then, 

for each voxel x, a binary test is performed: θ ≥ ξ, where θk indicates the k-th feature of Θ 

and ξ is a threshold. According to the result of the test function, the training voxel x will be 

sent to its left or right child node. The purpose of training is to optimize both values of θk 

and ξ for each internal node by maximizing the information gain (Criminisi et al., 2012; 

Zikic et al., 2013a). Specifically, during node optimization, all variable features θK ∈ Θ are 

tried one by one, in combination with many discrete values for the threshold ξ. The optimal 

combination of  and ξ* corresponding to the maximum information gain is 

finally stored in the node for future use. The tree continues growing as more splits are made, 

and stops at a specified depth (D), or when satisfying the condition that a leaf node contains 

less than a certain number of training samples (Smin). Finally, by simply counting the labels 

of all training samples which reach each leaf node, we can associate each leaf node l with 

the empirical distribution over classes . In our implementation, before training 

each tree, we randomly sample 10000 Haar-like features (Section 2.4) from the feature pool. 

During the tree training, for each node optimization, all these 10000 Haar-like features are 

searched with their respective randomly sampled thresholds to find the feature-threshold 

combination, which maximizes the information gain defined as the entropy difference before 

and after split. The number of thresholds randomly sampled at each node is set as 10. The 

threshold selection criterion is the same as that implemented in the open source library 

provided by Microsoft (Sherwood)1.

During testing, each voxel to be classified is independently pushed through each trained tree 

t, by applying the learned split parameters (θk and ξ). Upon arriving at a leaf node lx, the 

empirical distribution of the leaf node is used to determine the class probability of the testing 

sample x at tree t, i.e., . The final probability of the testing 

sample x is computed as the average of the class probabilities from individual trees, i.e., 

. In this paper, by applying the trained forest in the first 

1http://research.microsoft.com/en-us/projects/decisionforests/
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iteration, each i-th training subject will produce three tissue probability maps 

, as shown in the second row of Fig. 2.

During the training of later iterations, the same training procedure is repeated as the first 

iteration. The only difference is that the tissue probability maps Ī obtained from the first 

iteration will act as additional source images for extracting the new types of features. Then, 

the tissue probability maps are iteratively updated and fed into the next training iteration. 

Finally, a sequence of classifiers will be obtained. Fig. 3 shows an example by applying a 

sequence of learned classifiers on a testing subject. As shown in Fig. 3, in the first iteration, 

three tissue probability maps are estimated with only the image appearance features obtained 

from multi-modality images I. In the later iterations, the tissue probability maps Ī estimated 

from the previous iteration are also fed into the next classifier for refinement. As we can see 

from Fig. 3, the tissue probability maps are gradually improved with iterations and become 

more and more accurate, by comparing to the ground truth shown in the last row of Fig. 3.

2.4 Appearance and context features

Our framework can utilize any kind of features from multi-modality and tissue probability 

maps, such as SIFT (Lowe, 1999), HOG (Dalal and Triggs, 2005), and LBP features 

(Ahonen et al., 2006), for tissue classification. In this work, we use 3D Haar-like features 

(Viola and Jones, 2004) due to their efficiency. Specifically, for each voxel x, its Haar-like 

features are computed as the local mean intensity of any randomly displaced cubical region 

R1 (Fig. 4(a)), or the mean intensity difference over any two randomly displaced, 

asymmetric cubical regions (R1 and R2) (Fig. 4(b)), within the image patch R (Han, 2013):

where R is the patch centered at voxel x, I is any kind of source image, and the parameter B 

∈ {0, 1} indicates whether one or two cubical regions are used, as shown in Fig. 4(a) and 

(b), respectively. In the intensity patch R, its intensities are normalized to have the unit 

norm (Cheng et al., 2009; Wright et al., 2010). However, for the patches from the 

probability maps, we did not perform any normalization. In theory, for each voxel we can 

determine an infinite number of such features. For simplicity, we employ 3D Haar-like 

features for both image appearance features and multi-class context features.

2.5 Post-processing: Imposing anatomical constraint into the segmentation

Based on the probability maps estimated by the random forest, the final segmentation of the 

target subject could be obtained by assigning the label with the maximal probability for each 

voxel. However, the classification is performed for each voxel independently, and also as 

noticed in our previous work (Wang et al., 2014a), the probability maps obtained by the 

random forest might introduce artificial anatomical errors in the final segmentation results. 

To deal with this possible limitation, we impose an anatomical constraint into the 

segmentation by using sparse representation, which has been employed in many applications 

(Gao et al., 2012; Shao et al., 2014; Wang et al., 2013b; Wang et al., 2014b). Specifically, 
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by applying the trained classification forests, each training subject i can obtain its 

corresponding forest-based tissue probability maps . For each 

voxel x in each tissue probability map of the target subject, its probability patch is 

represented as  where 

 are the corresponding patches extracted from WM, 

GM and CSF probability maps, respectively. Note that 

 are arranged as column vectors. Note that, it is not 

necessary to perform any normalization on the column vectors since their range is already in 

[0 1]. Similarly, we can extract probability patches from the aligned probability maps of the 

i-th training subject, i.e., 

 is the 

neighborhood of x. Then we can build a dictionary 

 To represent the patch M (x) by the 

dictionaries D (x), its coefficients vector α could be estimated by many coding schemes, 

such as sparse coding (Wright et al., 2009; Yang et al., 2009) and locality-constrained linear 

coding (Wang et al., 2010). Here, we employ a sparse coding scheme (Wright et al., 2009; 

Yang et al., 2009), which is robust to noise and outlier, to estimate the coefficient vector α 

by minimizing a non-negative Elastic-Net problem (Zou and Hastie, 2005),

(2)

In the above Elastic-Net problem, the first term is the data fitting term based on the patch 

similarity, and the second term is the  regularization term which is used to enforce the 

sparse constraint on the reconstruction coefficients α, and the last term is the  smoothness 

term for enforcing similar coefficients for similar patches. Eq. (2) is a convex combination 

of  lasso (Tibshirani, 1996) and  ridge penalty, which encourages a grouping effect 

while keeping a similar sparsity of representation (Zou and Hastie, 2005). In our 

implementation, we use the LARS algorithm (Efron et al., 2004), which was implemented in 

the SPAMS toolbox (http://spams-devel.gforge.inria.fr), to solve the Elastic-Net problem. 

Each element of the sparse coefficient vector α, i.e., ai (y), reflects the similarity between 

the target patch M (x) and each patch ai (y) in the patch dictionary. Based on the assumption 

that similar patches should share similar tissue labels, we use the sparse coefficients α to 

estimate the probability of the voxel x belonging to the j-th tissue,  , 

i.e.,

(3)

where Li (y) is the segmentation label (WM, GM, or CSF) for voxel y in the i-th template 

image, and δi (Li (y)) is defined as
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(4)

Finally, Pj (x) is normalized to ensure  denotes a neighborhood around 

voxel x in the i-th training subject. To convert from the soft probability map to the hard 

segmentation, the label of the voxel is determined using the maximum a posteriori (MAP) 

rule.

3 Experimental Results

Due to the dynamic changes of appearance pattern in the first year of life, it is difficult to 

train the random forest jointly for all time-points. Therefore, we trained the random forest 

for each time-point separately. As mentioned in Section 2.1, in the training stage, for each 

time-point (0-, 3-, 6-, 9-, and 12-months of age), we have 10 training atlases with all T1, T2 

and FA modality images. The validations are performed on other 119 target subjects 

consisting of 26, 22, 22, 23, and 26 subjects at 0-, 3-, 6-, 9- and 12-months of age, 

respectively. The manual segmentation for each subject is provided and considered as the 

ground truth for quantitative comparison. In the following, we will mainly focus on 

describing results for the 6-month images, since they are the most difficult for segmentation 

due to insufficient image contrast. Besides, we will also validate the proposed method on the 

MICCAI grand challenge (http://neobrains12.isi.uu.nl/).

In our implementation, for each tissue type, we randomly select 10000 training voxels for 

each class label from each training subject. Then, from the 7×7×7 patch of each training 

voxel, 10000 random Haar-like features are extracted from all source images: T1, T2, FA 

images, and three probability maps of WM, GM and CSF. In each iteration, we train 20 

classification trees. We stop the tree growth at a certain depth (i.e., D=50), with a minimum 

number of 8 samples for each leaf node (Smin=8) (Zikic et al., 2013a). The selections of the 

parameters are based on the following cross-validation.

3.1 Impact of the parameters

Values for the parameters (e.g., the number of training subjects, the number of trees, depth 

of trees, and the patch size) in our proposed method were determined via leave-one-out 

cross-validation on all training subjects, according to the parameter settings described in 

(Bach et al., 2012). During parameter optimization, when optimizing a certain parameter, the 

other parameters were set to their own fixed values. For example, we first study the impact 

of the number of training subjects on segmentation accuracy in the 1st row of Fig. 5. We 

conservatively set the number of tree as 30 and the maximal tree depth as 100. We further 

set the minimal number of samples for leaf node as 8 according to previous work (Zikic et 

al., 2013a). Thus, in most cases, the stopping criterion is based on the minimal number of 

samples in the leaf node. As expected, increasing the number of training subjects generally 

improves the segmentation accuracy, as the average Dice ratio increases from 0.81 (N=1) to 

0.86 (N=9) for WM, from 0.83 (N=1) to 0.88 (N=9) for GM, and from 0.88 (N>=1) to 0.92 

(N=9) for CSF. Also, increasing the number of training subjects seems to make the 

segmentations more consistent as reflected by the reduced standard deviation from 0.014 
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(N=1) to 0.009 (N=9) for WM, from 0.011 (N=1) to 0.009 (N=9) for GM, and from 0.010 

(N=1) to 0.007 (N=9) for CSF. Though the experiment shows an increase of accuracy with 

the increasing number of training subjects, the segmentation performance begins to 

converge after N=9. Therefore, in this paper, we choose N≥10, which is enough to generate 

reasonable and accurate results. It is worth noting that the increase of the training subjects 

will not increase the testing time, which is different from other multi-atlas based methods 

(Coupé et al., 2011; Rousseau et al., 2011; Srhoj-Egekher et al., 2013; Wang et al., 2014a). 

The 2nd row of Fig. 5 shows the influence of the number of trees on the segmentation 

accuracy. We similarly find that the more the better, but also the longer it will take to do the 

training. In addition, note that, beyond a certain number of trees, results will stop getting 

significantly improved. In this paper, we finally choose 20 trees in each iteration. The 3rd 

row shows the impact of the maximally allowed depth of trees. In general, a low depth will 

be likely to under-fitting, while a high value will be likely to over-fitting. In our case, we 

find that the performance is gradually improved from depth of 5 to depth of 20 and keeps 

steady when the depth is over 20. The 4th row shows the impact of the minimally allowed 

number for the leaf node. The performance is steady when the number is less than 20; 

however, when it is larger than 50, the performance starts decreasing. This may be due to the 

case that the samples with different tissue labels will possibly fall into the same leaf node if 

a larger allowance is set, which will result in a fuzzy classification. The last row shows the 

influence of the patch size. The optimal patch size is related to the complexity of the 

anatomical structure (Coupé et al., 2011; Tong et al., 2013). Too small or too large patch 

size will result in poor performance. Therefore, in this paper, we select the patch size as 

7×7×7.

3.2 Importance of the multi-source information

Fig. 6 shows the Dice ratios on 22 isointense subjects by sequentially applying the learned 

classifiers based on the multi-source. It can be seen that the Dice ratios are improved with 

the iterations and become stable after a few iterations (i.e., 5 iterations). Specially, in the 

second iteration, the Dice ratios are improved greatly due to the integration of the 

previously-estimated tissue probability maps for guiding classification. These results 

demonstrate the importance of using multi-class context features for segmentation.

We further evaluate the importances of different modalities: T1, T2 and FA. Since the multi-

class context feature is important for the segmentation, as shown in Fig. 6, we integrate it 

with different combinations of three modalities for training and testing. Fig. 7 demonstrates 

the Dice ratios of the proposed method with different combinations of three modalities. It is 

can be seen from Fig. 7 that any combination of modalities generally produce more accurate 

results than any single modality, which proves that the multi-modality information is useful 

for guiding tissue segmentation (Wang et al., 2014a).

3.3 Comparison with existing methods

To evaluate the performance of the proposed method, we adopt the leave-one-out cross-

validation. We first qualitatively make comparison with (a) the majority voting (MV), (b) 

our previously proposed multimodality sparse anatomical labeling (Wang et al., 2014a) on 

an isointense image (shown in Fig. 3). Specifically, majority voting method assigned the 
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tissue label by obtaining the most votes to each voxel based on the warped segmentations. 

Our previous method (Wang et al., 2014a) used a patch-based sparse representation strategy. 

In that work, M and D in Eq. 2 are replaced by target and training image features, and the 

final segmentation is calculated based on the sparse coefficients α and the training image 

labels. As demonstrated in (Rousseau et al., 2011), the use of nonlinear registrations to 

warped all the training subjects onto the target image space can produce more accurate 

results than the use of linear registrations. Therefore, to achieve the best performance for 

majority voting, and our previous method, we applied a nonlinear registration method 

(ANTs, http://stnava.github.io/ANTs) (Avants et al., 2011) to align all atlases to the target 

subject based on the multi-modality images. But, for the proposed method, we do not need 

any registration since all the subjects already have the same orientation. Fig. 8 shows the 

segmentation results of these methods on an isointense image. The first row shows the 

original T1, T2, FA images and also the manual segmentation, which is regarded as the 

ground truth. The second row shows the segmentation results by different methods. The 

columns (c) and (d) show the segmentation results obtained by the proposed method without 

and with anatomical constraint, as described in Section 2.5. To better compare the results of 

different methods, the label differences (compared with the ground-truth segmentation) are 

also presented. The corresponding white matter surfaces obtained by different methods are 

shown in Fig. 9. Two view angles are provided in the first and the third rows, and the 

zoomed views are presented in the second and the fourth rows. Both the label differences 

and zoomed view of surfaces qualitatively demonstrate the advantage of the proposed 

method.

We then quantitatively evaluate the performance of different methods by employing the 

Dice ratios, as shown in Table 2, together with the results on other 4 time-points. We also 

evaluate the accuracy by measuring a modified Hausdorff distance (MHD), which is defined 

as the 95th-percentile Hausdorff distance. The MHD comparison is shown in Table 3. It can 

be clearly seen that, even for the proposed method without anatomical constraint (last 

second column), it produces a competitive accuracy at all time-points. Especially, a superior 

accuracy for segmenting the 6-month infant brain images is achieved, as all other methods 

cannot effectively utilize the multi-source information for guiding the segmentation.

3.4 Results on the NeobrainS12 MICCAI Challenge

We further tested our algorithm on three preterm born infants acquired at 40 weeks gestation 

corrected age, as provided by the MICCAI Grand Challenge on Neonatal Brain 

Segmentation (NeoBrainS12). For each infant, an axial 3D T1-weighted scan and an axial 

T2-weighted scan were acquired with Philips 3T MRI scanner in University Medical Center 

Utrecht, the Netherlands. The T1-weighted scans were acquired with the following 

parameters: TR=9.4 ms; TE=4.6 ms; scan time=3.44 min, FOV=180x180; reconstruction 

matrix=512x512; consecutive sections with thickness=2.0 mm; number of sections=50, in-

plane resolution 0.35 mm x 0.35 mm. The parameters for the acquisition of T2-weighted 

images were: TR=6293 ms; TE=120 ms; scan time=5.40 min; FOV=180x180; 

reconstruction matrix=512x512; consecutive sections with thickness=2.0 mm; number of 

sections=50, in-plane resolution 0.35 mm x 0.35 mm. Manual (reference) segmentations 

were performed either by MDs who were working towards a PhD in neonatology, or by 
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trained medical students. The manual segmentations were then verified independently by 

three neonatologists, each with at least seven years of experience in reading neonatal MRI 

scans. In case of disagreement, the decision on segmentation was made in a consensus 

meeting. Two subjects with T1-weighted MRI, T2-weighted MRI, and the corresponding 

reference standard are available for training. A detailed description of the data and the 

protocol is available at http://neobrains12.isi.uu.nl.

Based on the only two available training subjects provided by the NeoBrainS12, we trained 

the sequence classifiers and applied on the above three testing subjects. The parameters 

setting is same as section 3.1. The segmentation results by the proposed method are shown 

in Fig. 10, in which we segment the infant brain into 6 classes: unmyelinated and myelinated 

whiter matter (WM), cortical grey matter (CGM), basal ganglia and thalami (BGT), 

brainstem (BS), cerebellum (CB), ventricles and cerebrospinal fluid in the extracerebral 

space (CSF). The Dice ratios and MHD by our method and also other competing methods 

(provided by the NeoBrainS12) are shown in Table 4. It can be clearly seen that our methods 

achieves the superior performance. Based on the overall ranking (shown in Table 5), which 

is calculated by the DC and MHD, our method is ranked top among all the competing 

methods2.

3.5 Comparison with other methods on the MICCAI2013 SATA challenge

Besides for the infant brain segmentation, our method can be also used in other applications. 

For example, we straightforwardly applied it to the MICCAI2013 SATA challenge3 for the 

diencephalon labeling, in which the diencephalon is labeled into 14 ROIs. This dataset 

consists of 35 training and 12 testing T1 MR images with a resolution of 1×1×1 mm3. The 

parameters setting is similar with Section 3.1, except that we randomly select 1000 samples 

for each ROI due to the small size of each ROI, and conservatively set the maximal tree 

depth D=100 and the minimal number of samples for each leaf node Smin=4. The 

segmentation results on the 12 testing subjects were submitted to the challenge evaluation 

system. The accuracy measured by the mean (±standard deviation) Dice ratio by our method 

(without post-processing) on this challenge data is 0.8426(±0.0478) and that by our method 

(with post-processing) is 0.8613(±0.0261), while the leading accuracy is 0.8686(±0.0237) 

(with details of segmentations provided in the website4). It can be seen that our result is still 

very good, only slightly short of the leading accuracy.

3.6 Computational time

The training was done on a computer cluster (2.93 GHz Intel processors, 12M L3 cache, and 

48 GB memory). The average training time for one tree is around 2 hours. For each of 5 

iterations, we trained 20 trees. Each tree was trained in a parallel way, thus the total training 

time is around 2 hours × 5 iterations = 10 hours. The average testing time is around 5 mins 

for a typical infant image, without including the pre-processing (Section 2.1). Note that, for 

the comparison methods, we also exclude the time for the pre-processing. Inspiring by 

2http://neobrains12.isi.uu.nl/mainResults_Set1_Original.php
3https://masi.vuse.vanderbilt.edu/workshop2013
4http://masi.vuse.vanderbilt.edu/submission/leaderboard.html
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recently near-real-time labeling work by Ta et al.’s work (Ta et al., 2014), we will further 

optimize the proposed work.

4 Discussions and Conclusion

We have presented a learning-based method to effectively integrate multi-source images and 

the tentatively estimated tissue probability maps for infant brain image segmentation. 

Specifically, we employ a random forest technique to effectively integrate features from 

multi-source images, including T1, T2, FA images and also the probability maps of different 

tissues estimated during the classification process. Experimental results on 119 infant 

subjects and MICCAI grand challenge show that the proposed method achieves better 

performance than other state-of-the-art automated segmentation methods.

Compared to the existing multi-modality sparse anatomical labeling (Wang et al., 2014a), 

which treats each source information equally and thus cannot effectively utilize multiple 

source information, our method implicitly explores the contribution of each source 

information by employing the random forest to learn the optimal features. Even without 

using the anatomical constraint, the proposed method can achieve promising results with the 

least computational cost. Our method can be further combined with an anatomically-

constrained multi-atlas labeling approach to alleviate the possible anatomical errors.

There are many discriminative classification algorithms such as Support Vector Machines 

(SVM) (Burges, 1998), which have been applied successfully to many tasks. However, 

SVMs are inherently binary classifiers. In order to classify different tissues, they are often 

applied hierarchically or in the one-versus-all manner. Usually, several different classes 

have to be grouped together, which may make the classification task more complex than it 

should be. By contrast, the classifier employed in this paper is a random decision forest. An 

important advantage of random forests is that they are inherently multi-label classifiers, 

which allows us to classify different tissues simultaneously. Random forests can effectively 

handle a large number of training data with high feature dimensionality. In recent works 

(Bosch et al., 2007; Pei et al., 2007), random forests have also been shown better than SVMs 

in multi-class classification problems (Criminisi et al., 2009).

For the random forest, in general, a low depth will likely lead to under-fitting, while a high 

value will likely lead to over-fitting. In our case, we find that the performance is gradually 

improved from depth of 5 to depth of 20 and keeps steady when the depth is over 20. The 

reason why the performance is not decreased when the depth is over 50 can be summarized 

as follows. a) The use of the minimal number of leaf nodes will prevent tree growing too 

deep. In our experiments, although the maximal tree depth is set as 50, in most cases the tree 

stops growing after reaching the depth of about 25. b) To improve generalization, each tree 

is trained with a subset of training samples and also a randomly-selected subset of features, 

as often done in the literature (Criminisi et al., 2009; Criminisi et al., 2012). By assembling 

these individual trees together, the generalization power can be improved.

In our work, we trained the random forest for each time-point separately, which may be not 

the optimal choice. It is possible to train a single random forest jointly for all the time-points 

by taking temporal relationships into account, which will actually render our task as a 4D 
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segmentation problem. However, there are many challenges to extend 3D segmentation into 

4D segmentation. First, using longitudinal constraints, the segmentation performance will 

highly depend on the accuracy of registering different time-point images. For the infant 

images, the registration itself has been proven difficult due to rapid changes in anatomy and 

tissue composition during the first year of age (Kuklisova-Murgasova et al., 2011). Second, 

it is also difficult to evaluate the segmentation consistency between different time-point 

images, since no ground truth is available. Considering that, in this paper, we focus on the 

3D segmentation problem by considering each time-point independently. Also, the current 

framework can be applied to subjects with missing longitudinal data, which is unavoidable 

in the longitudinal studies.

Although our proposed method can produce more accurate results on the infant brain 

images, it still has some limitations. (1) Our proposed method requires a number of training 

subjects, along with their corresponding manual segmentation results. Considering that there 

are totally 50 training subjects for all 5 time-points, a large amount of efforts are required to 

achieve manual segmentations. In this paper, we performed automatic segmentations by the 

iBEAT (Dai et al., 2013), followed by manual editing by experts. Thus, the ground truth 

could be systematically biased by the iBEAT results. (2) Our current training subjects 

consist of only healthy subjects, which may limit the performance of our method on the 

pathological subjects. This particular limitation could be partially overcome by employing 

other imaging information such as the mean diffusivity computed from DTI. (3) In this 

work, we extract the same feature type, i.e., 3D Haar-like feature, from both multi-modality 

images and tissue probability maps, which may be not the optimal choice. We should 

explore other types of features as well. All the above-mentioned limitations will be 

investigated in our future work.
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Research highlight

• The proposed method effectively integrates multi-source.

• An iterative classification scheme is adopted to train sequence classifiers.

• No any nonlinear registration involved in the proposed method.

• Validation was performed on 119 infant subjects.

• The proposed method was ranked top on the MICCAI grand challenge.
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Fig. 1. 
Illustration of three distinct stages in infant brain development, with each stage having quite 

different WM/GM contrast patterns in MR images.
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Fig. 2. 
Flowchart of the training procedure for our proposed method with multi-source images, 

including T1, T2, and FA images, along with probability maps of WM, GM and CSF. The 

appearance features from multi-modality images (I) are used for training the first classifier, 

and then both appearance features and multi-class context features from three tissue 

probability maps ( ) are employed for training the subsequent classifiers.
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Fig. 3. 
The estimated tissue probability maps by applying a sequence of learned classifiers on a 

target subject in the isointense stage with T1, T2 and FA modalities. The probability maps 

become more and more accurate and sharp with iterations. The last row shows the ground 

truth for comparison.
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Fig. 4. 
Haar-like features, a 2D illustration. The red rectangle indicated a patch R centered at x. (a) 

b=0: Haar-like features are computed as the local mean intensity of any randomly displaced 

cubical region within the image patch R. (b) b=1: Haar-like features are computed as the 

mean intensity difference over any two randomly displaced, asymmetric cubical regions (R1 

and R1) within the image patch R.
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Fig. 5. 
Influence of 5 different parameters: the number of training subjects (1st row), the number of 

trees (2nd row), the depth of each tree (3rd row), the minimally allowed number for the leaf 

node (4th row), and the patch size (last row).
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Fig. 6. 
Changes of Dice ratios of WM, GM and CSF on 22 isointense subjects, with respect to the 

increase of iteration number.
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Fig. 7. 
Average Dice ratios of the proposed method with respect to different combinations of 3 

modalities.
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Fig. 8. 
Comparison between (a) majority voting and (b) Wang et al.’s method (Wang et al., 2014a) 

on an isointense subject shown in Fig. 3. The first row shows the T1, T2, and FA images of 

this isointense subject. The second row shows the segmentation results of different methods. 

The last three rows show the label-difference maps (for WM, WM, and CSF, respectively), 

where the dark-red colors denote false negatives, while the dark-blue colors denote false 

positives. The columns (c) and (d) show the results by the proposed method without and 

with post-processing (i.e., using the anatomical constraint as described in Section 2.5), 

respectively.
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Fig. 9. 
Comparison of white matter surfaces obtained with different methods (a-d), along with the 

ground truth shown in (e).
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Fig. 10. 
Segmentation results of the proposed method on three preterm born infants acquired at 40 

weeks gestation corrected age, as provided by the MICCAI Grand Challenge on Neonatal 

Brain Segmentation (NeoBrainS12). Each column corresponds to three different slices of the 

same subject and their corresponding automatic segmentations. Abbreviations: WM - 

unmyelinated and myelinated whiter matter; CGM - cortical grey matter; BGT - basal 

ganglia and thalami; BS - brainstem; CB - cerebellum; CSF - ventricles and cerebrospinal 

fluid in the extracerebral space.
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Table 1

A brief summary of the existing multi-atlas label fusion (MALF) methods for infant brain MR image 

segmentation.

Methods Sources Registration

Development stage at scan

Run-time
Infantile Isointense Early adult-

like

(Weisenfeld and Warfield, 2009) T1, T2 Nonlinear ✓ 1h

(Shi et al., 2010) T2 Nonlinear ✓ 1h

(Srhoj-Egekher et al., 2013) T1,T2 Nonlinear ✓ 1h

(Wang et al., 2014b) T2 Nonlinear ✓ 2h

(Wang et al., 2014a) T1, T2, FA Nonlinear ✓ ✓ ✓ 2h

Proposed method

T1, T2, FA,
Probability

maps of WM,
GM and CSF

Linear ✓ ✓ ✓ 5m
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Table 2

Segmentation accuracies (Dice ratios in percentage) of 6 different methods on 119 infant subjects, along with 

information of both registration technique and runtime used by each method. Proposed1 and Proposed2 denote 

the proposed method without and with post-processing (i.e., using anatomical constraint as described in 

Section 2.5), respectively. Numbers (0, 3, 6, 9, and 12) denote months of age for the target subjects.

Method MV Wang et al. Proposed1 Proposed2

Time cost 1h 2h 5m 1.8h

WM

0 81.6±0.28 90.1±0.59 91.7±0.64 92.1±0.62

3 76.6±1.48 87.9±1.71 88.8±1.09 89.1±0.95

6 80.1±0.83 84.2±0.78 86.4±0.79 87.9±0.68

9 79.2±0.98 88.7±1.89 89.0±0.78 89.4±0.56

12 82.5±1.05 91.1±1.42 91.3±0.74 91.8±0.65

GM

0 78.6±1.02 88.5±0.81 88.7±0.66 88.8±0.42

3 77.3±1.42 87.5±0.51 88.1±1.00 88.3±0.90

6 79.9±1.04 84.8±0.77 88.2±0.77 89.7±0.59

9 83.6±0.69 88.4±0.54 89.5±0.49 90.3±0.54

12 84.9±1.01 89.3±0.57 89.9±0.74 90.4±0.68

CSF
0 76.6±1.57 82.1±2.59 83.9±2.20 84.2±2.02

3 80.6±1.55 84.6±1.10 85.1±1.52 85.4±1.49

6 71.2±0.71 83.0±0.77 92.7±0.63 93.1±0.55

9 68.7±1.27 82.4±2.27 83.0±1.53 83.7±1.09

12 65.2±3.69 82.0±2.59 81.7±1.90 82.2±1.69
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Table 3

Segmentation accuracies (MHD, in mm) of 6 different methods on 119 infant subjects. Proposed1 and 

Proposed2 denote the proposed method without and with post-processing (i.e., using anatomical constraint as 

described in Section 2.5), respectively. Numbers (0, 3, 6, 9, and 12) denote months of age for the target 

subjects. The upper part of table shows the results on WM/GM boundaries, while the bottom part shows the 

result on GM/CSF boundaries.

Method MV Wang et al. Proposed1 Proposed2

WM
/

GM

0 1.84±0.14 1.25±0.21 1.13±0.20 1.02±0.20

3 2.17±0.11 1.63±0.20 1.47±0.22 1.31±0.21

6 2.06±0.18 1.75±0.21 1.46±0.13 1.33±0.10

9 2.25±0.17 2.03±0.43 1.54±0.16 1.50±0.14

12 2.08±0.25 1.34±0.21 1.28±0.25 1.20±0.24

GM
/

CSF

0 3.72±0.69 2.51±0.44 2.21±0.46 2.19±0.43

3 4.35±0.53 2.49±0.33 2.26±0.44 2.21±0.38

6 4.84±0.48 4.25±0.53 2.19±0.25 2.12±0.19

9 4.53±0.43 2.98±0.34 2.19±0.36 2.14±0.34

12 5.01±0.43 2.56±0.36 2.18±0.58 2.05±0.55
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Table 5

Overall ranks of different methods on NeoBrainS12 Challenge data (http://neobrains12.isi.uu.nl/

mainResults_Set1_Original.php).

Team Name Overall Rank Placed Last Update Method Type

UNC-IDEA 2.08 1 29-Apr-14 Automatic

Imperial 3.94 2 4-Jul-12 Automatic

Oxford 4.45 3 15-Nov-12 Automatic

UCL 5.5 4 4-Jul-12 Automatic

UPenn 6 5 4-Jul-12 Automatic

DCU 7.25 6 29-Apr-14 Automatic
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