161 research outputs found

    Study on merging control supported by IEEE 802.11p systems for highway environments

    Get PDF
    International audienceCooperative Adaptive Cruise Control (CACC) systems are intended to make driving safer and more efïŹcient by utilizing information exchange between vehicles (V2V) and/or between vehicles and infrastructures (V2I). An important application of CACC is safe vehicle merging when vehicles join a main road, achieved by compiling information on the movement of individual main road vehicles. To support such road safety applications, the IEEE standardized the 802.11p amendment dedicated to V2V and V2I communications. This paper seek answers to the questions as to whether the IEEE 802.11p can support merging control and how the communications performance is translated into the CACC performance. We build an analytical model of the IEEE 802.11p medium access control (MAC) for transmissions of the ETSI-standardized Cooperative Awareness Messages (CAM) and Decentralized Environmental NotiïŹcation Messages (DENM) to support merging control. We also developed a highway merging decision algorithm. Using computer simulations, packet delivery ratio (PDR), and packet inter-reception (PIR) time of IEEE 802.11p-based V2V and V2I communications and their impact on the CACC performance are investigated. Our study discloses several useful insights including that PIR and throughput provide a good indication of the CACC performance, while improving PDR does not necessarily enhance the CACC performance. Moreover, thanks to its ability to reliably provide information at constant time intervals, the V2I structure preferred over V2V as a support for CACC

    Study on Merging Control Supported by IEEE 802.11p Systems for Highway Environments

    Get PDF
    International audienceCooperative Adaptive Cruise Control (CACC) systems are intended to make driving safer and more efïŹcient by utilizing information exchange between vehicles (V2V) and/or between vehicles and infrastructures (V2I). An important application of CACC is safe vehicle merging when vehicles join a main road, achieved by compiling information on the movement of individual main road vehicles. To support such road safety applications, the IEEE standardized the 802.11p amendment dedicated to V2V and V2I communications. This paper seek answers to the questions as to whether the IEEE 802.11p can support merging control and how the communications performance is translated into the CACC performance. We build an analytical model of the IEEE 802.11p medium access control (MAC) for transmissions of the ETSI-standardized Cooperative Awareness Messages (CAM) and Decentralized Environmental NotiïŹcation Messages (DENM) to support merging control. We also developed a highway merging decision algorithm. Using computer simulations, packet delivery ratio (PDR), and packet inter-reception (PIR) time of IEEE 802.11p-based V2V and V2I communications and their impact on the CACC performance are investigated. Our study discloses several useful insights including that PIR and throughput provide a good indication of the CACC performance, while improving PDR does not necessarily enhance the CACC performance. Moreover, thanks to its ability to reliably provide information at constant time intervals, the V2I structure preferred over V2V as a support for CACC

    Performance of CAM based Safety Applications using ITS-G5A MAC in High Dense Scenarios

    Get PDF
    ETSI ITS-G5 is the current vehicle-to-vehicle communication technology in Europe, which will be standardized by ETSI TC ITS. It is based on IEEE 802.11p and therefore uses a CSMA/CA scheme for Media Access Control (MAC). In this paper we analyze the performance of CAM based safety applications using the ETSI ITS-G5 MAC technology in a challenging scenario with respect to MAC issues: A suitable freeway segment with 6 lanes in each direction. The freeway scenario is thoroughly modeled and implemented in the well known ns-3 simulation environment. Based on this model, the paper shows the performance of CAM based safety applications under MAC challenging conditions. Therefore we provide a set of simulation results resting upon a particular performance metric which incorporates the key requirements of safety applications. Finally we analyze two concrete example scenarios to make a point how reliable CAM based safety applications are in high dense traffic scenarios

    A survey on vehicular communication for cooperative truck platooning application

    Get PDF
    Platooning is an application where a group of vehicles move one after each other in close proximity, acting jointly as a single physical system. The scope of platooning is to improve safety, reduce fuel consumption, and increase road use efficiency. Even if conceived several decades ago as a concept, based on the new progress in automation and vehicular networking platooning has attracted particular attention in the latest years and is expected to become of common implementation in the next future, at least for trucks.The platoon system is the result of a combination of multiple disciplines, from transportation, to automation, to electronics, to telecommunications. In this survey, we consider the platooning, and more specifically the platooning of trucks, from the point of view of wireless communications. Wireless communications are indeed a key element, since they allow the information to propagate within the convoy with an almost negligible delay and really making all vehicles acting as one. Scope of this paper is to present a comprehensive survey on connected vehicles for the platooning application, starting with an overview of the projects that are driving the development of this technology, followed by a brief overview of the current and upcoming vehicular networking architecture and standards, by a review of the main open issues related to wireless communications applied to platooning, and a discussion of security threats and privacy concerns. The survey will conclude with a discussion of the main areas that we consider still open and that can drive future research directions.(c) 2022 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

    Intrusion Detection System for Platooning Connected Autonomous Vehicles

    Get PDF
    The deployment of Connected Autonomous Vehicles (CAVs) in Vehicular Ad Hoc Networks (VANETs) requires secure wireless communication in order to ensure reliable connectivity and safety. However, this wireless communication is vulnerable to a variety of cyber atacks such as spoofing or jamming attacks. In this paper, we describe an Intrusion Detection System (IDS) based on Machine Learning (ML) techniques designed to detect both spoofing and jamming attacks in a CAV environment. The IDS would reduce the risk of traffic disruption and accident caused as a result of cyber-attacks. The detection engine of the presented IDS is based on the ML algorithms Random Forest (RF), k-Nearest Neighbour (k-NN) and One-Class Support Vector Machine (OCSVM), as well as data fusion techniques in a cross-layer approach. To the best of the authors’ knowledge, the proposed IDS is the first in literature that uses a cross-layer approach to detect both spoofing and jamming attacks against the communication of connected vehicles platooning. The evaluation results of the implemented IDS present a high accuracy of over 90% using training datasets containing both known and unknown attacks

    230501

    Get PDF
    Cooperative Vehicular Platooning (Co-VP) is a paradigmatic example of a Cooperative Cyber-Physical System (Co-CPS), which holds the potential to vastly improve road safety by partially removing humans from the driving task. However, the challenges are substantial, as the domain involves several topics, such as control theory, communications, vehicle dynamics, security, and traffic engineering, that must be coupled to describe, develop and validate these systems of systems accurately. This work presents a comprehensive survey of significant and recent advances in Co-VP relevant fields. We start by overviewing the work on control strategies and underlying communication infrastructures, focusing on their interplay. We also address a fundamental concern by presenting a cyber-security overview regarding these systems. Furthermore, we present and compare the primary initiatives to test and validate those systems, including simulation tools, hardware-in-the-loop setups, and vehicular testbeds. Finally, we highlight a few open challenges in the Co-VP domain. This work aims to provide a fundamental overview of highly relevant works on Co-VP topics, particularly by exposing their inter-dependencies, facilitating a guide that will support further developments in this challenging field.info:eu-repo/semantics/publishedVersio

    Requirements and test methods for vehicular antenna systems supporting cooperative ITS applications

    Get PDF
    Antenna systems are crucial for the link performance of§ any wireless systems, including those supporting cooperative intelligent transport system (C-ITS) applications. It is therefore of great importance to define performance metrics that are relevant for C-ITS applications and a framework for measuring the metrics. In this paper, we propose to measure performance by cumulative distribution functions based on the output SNR of the antenna system under test. The SNR samples are collected with respect to the time scales relevant for C-ITS applications. The framework is suitable for both computer simulations and over-the-air measurements and can handle antenna systems that are time-varying and have multiple output ports
    • 

    corecore