3,144 research outputs found

    Passivity and passivation of interconnected time-delay models of reheat power systems

    Get PDF
    This paper investigates the problems of delay-dependent passivity and passivation of a class of linear interconnected time-delay systems with particular emphasis on multiarea reheat power systems. This class contains state delay in the dynamics and observation at the subsystem (local) level. A new state transformation is developed to exhibit the delay dependence in the system dynamics and a less conservative passivity-bounding inequality is incorporated. Through the analytical development, it is established that the passivity condition can be cast in a linear matrix inequality (LMI) format at the subsystem level thereby facilitating decentralized passivity analysis. For state-feedback passivation, it is proven that it is indifferent to use instantaneous or delayed decentralized state feedback. The case of dynamic output-feedback passivation is also treated. The analytical developments are simulated to a typical multiarea power system and the ensuing results show satisfactory performance

    Performance Comparison of Phase Change Materials and Metal-Insulator Transition Materials for Direct Current and Radio Frequency Switching Applications

    Get PDF
    Advanced understanding of the physics makes phase change materials (PCM) and metal-insulator transition (MIT) materials great candidates for direct current (DC) and radio frequency (RF) switching applications. In the literature, germanium telluride (GeTe), a PCM, and vanadium dioxide (VO2), an MIT material have been widely investigated for DC and RF switching applications due to their remarkable contrast in their OFF/ON state resistivity values. In this review, innovations in design, fabrication, and characterization associated with these PCM and MIT material-based RF switches, have been highlighted and critically reviewed from the early stage to the most recent works. We initially report on the growth of PCM and MIT materials and then discuss their DC characteristics. Afterwards, novel design approaches and notable fabrication processes; utilized to improve switching performance; are discussed and reviewed. Finally, a brief vis-á-vis comparison of resistivity, insertion loss, isolation loss, power consumption, RF power handling capability, switching speed, and reliability is provided to compare their performance to radio frequency microelectromechanical systems (RF MEMS) switches; which helps to demonstrate the current state-of-the-art, as well as insight into their potential in future applications

    Photovoltaic Energy Harvesting for Millimeter-Scale Systems

    Full text link
    The Internet of Things (IoT) based on mm-scale sensors is a transformational technology that opens up new capabilities for biomedical devices, surveillance, micro-robots and industrial monitoring. Energy harvesting approaches to power IoT have traditionally included thermal, vibration and radio frequency. However, the achievement of efficient energy scavenging for IoT at the mm-scale or sub mm-scale has been elusive. In this work, I show that photovoltaic (PV) cells at the mm-scale can be an alternative means of wireless power transfer to mm-scale sensors for IoT, utilizing ambient indoor lighting or intentional irradiation of near-infrared (NIR) LED sources through biological tissue. Single silicon and GaAs photovoltaic cells at the mm-scale can achieve a power conversion efficiency of more than 17 % for silicon and 30 % for GaAs under low-flux NIR irradiation at 850 nm through the optimized device structure and sidewall/surface passivation studies, which guarantees perpetual operation of mm-scale sensors. Furthermore, monolithic single-junction GaAs photovoltaic modules offer a means for series-interconnected cells to provide sufficient voltage (> 5 V) for direct battery charging, and bypassing needs for voltage up-conversion circuitry. However, there is a continuing challenge to miniaturize such PV systems down to the sub mm-scale with minimal optical losses from device isolation and metal interconnects and efficient voltage up-conversion. Vertically stacked dual-junction PV cells and modules are demonstrated to increase the output voltage per cell and minimize area losses for direct powering of miniature devices for IoT and bio-implantable applications with low-irradiance narrowband spectral illumination. Dual-junction PV cells at small dimensions (150 µm x 150 µm) demonstrate power conversion efficiency greater than 22 % with more than 1.2 V output voltage under low-flux 850 nm NIR LED illumination, which is sufficient for batteryless operation of miniaturized CMOS IC chips. The output voltage of dual-junction PV modules with eight series-connected single cells is greater than 10 V while maintaining an efficiency of more than 18 %. Finally, I demonstrate monolithic PV/LED modules at the µm-scale for brain-machine interfaces, enabling two-way optical power and data transfer in a through-tissue configuration. The wafer-level assembly plan for the 3D vertical integration of three different systems including GaAs LED/PV modules, CMOS silicon chips, and neural probes is proposed.PHDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/163261/1/esmoon_1.pd

    A review of advances in pixel detectors for experiments with high rate and radiation

    Full text link
    The Large Hadron Collider (LHC) experiments ATLAS and CMS have established hybrid pixel detectors as the instrument of choice for particle tracking and vertexing in high rate and radiation environments, as they operate close to the LHC interaction points. With the High Luminosity-LHC upgrade now in sight, for which the tracking detectors will be completely replaced, new generations of pixel detectors are being devised. They have to address enormous challenges in terms of data throughput and radiation levels, ionizing and non-ionizing, that harm the sensing and readout parts of pixel detectors alike. Advances in microelectronics and microprocessing technologies now enable large scale detector designs with unprecedented performance in measurement precision (space and time), radiation hard sensors and readout chips, hybridization techniques, lightweight supports, and fully monolithic approaches to meet these challenges. This paper reviews the world-wide effort on these developments.Comment: 84 pages with 46 figures. Review article.For submission to Rep. Prog. Phy
    • …
    corecore