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This paper investigates the problems of delay-dependent passivity and passivation of a
class of linear interconnected time-delay systems with particular emphasis on multiarea
reheat power systems. This class contains state delay in the dynamics and observation at
the subsystem (local) level. A new state transformation is developed to exhibit the delay
dependence in the system dynamics and a less conservative passivity-bounding inequality
is incorporated. Through the analytical development, it is established that the passivity
condition can be cast in a linear matrix inequality (LMI) format at the subsystem level
thereby facilitating decentralized passivity analysis. For state-feedback passivation, it is
proven that it is indifferent to use instantaneous or delayed decentralized state feedback.
The case of dynamic output-feedback passivation is also treated. The analytical develop-
ments are simulated to a typical multiarea power system and the ensuing results show
satisfactory performance.

Copyright © 2006 M. S. Mahmoud and A. Ismail. This is an open access article distrib-
uted under the Creative Commons Attribution License, which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly
cited.

1. Introduction

Dynamical systems are being connected to form larger systems to meet the pressing de-
mands and therefore problems of decentralized control and stabilization of intercon-
nected systems are receiving considerable interests [1, 3–5, 11, 16, 21, 24, 26] where most
of the effort focused on dealing with the interaction patterns. When the interconnected
system involves delays [19], only few studies are available. In [12, 13], the focus has been
on delays in the interaction patterns with the subsystem dynamics being known com-
pletely. There are various sources for delays including finite capabilities of information
processing among different parts of the system, inherent phenomena like mass transport
flow and recycling and/or byproduct of computational delays [19]. In [15], a class of
uncertain systems is considered where the delays occur within the subsystems. Among

Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2006, Article ID 90416, Pages 1–21
DOI 10.1155/MPE/2006/90416

http://dx.doi.org/10.1155/S1024123X06904165


2 Passivity and passivation

the relevant topics is the passivity analysis and synthesis for classes of time-delay systems
[18, 22, 23, 25] using classical definitions of passivity and positive realness [2, 7, 27].
These results show that passivity-based methods are highly effective and producing ro-
bust controllers to classes of time-delay with parametric uncertainties. In particular, when
the time-delay factor is known, it is emphasized that delay-dependent passivity yields less
conservative performance results. An alternative approach to interconnected power sys-
tems has been considered in [28] by representing the power system as Hamiltonian con-
trol system with dissipation and then using decentralized saturated nonlinear control to
enhance the transient stability.

This paper has two major goals. First, it develops delay-dependent passivity and passi-
vation criteria for a class of linear interconnected time-delay systems and designs decen-
tralized state- and output-feedback controllers. Second, it applies these controllers to a
class of interconnected reheat power systems. To achieve the first goal, we consider a less
restrictive definition of passivity in dynamical systems [14] and employ a new state trans-
formation to exhibit the delay-dependent system dynamics. Then we proceed to establish
that the resulting passivity condition can be cast in a linear matrix inequality (LMI) for-
mat which can be conveniently solved by semidefinite programming techniques [7]. Fol-
lowing this, the problem of feedback passivation is examined and it is proven that when
the state variables are available for measurements, it is indifferent to use instantaneous
or delayed state feedback. This represents a pleasing avenue which enhances the effective-
ness of the developed state transformation. Finally, the case of dynamic output-feedback
passivation is treated and it is shown that the passivity conditions are cast in the form of
system of equations and LMIs.

To achieve the second goal, we consider a class of interconnected reheat power sys-
tems, the model of the individual system possesses intrinsic time-delay features due to
the feedback channel of reheat power as well as the finite processing capabilities in the
governor and power system stabilizer. As a typical application, we consider a three-area
reheat power system and use Matlab simulation to explore the effectiveness of the devel-
oped control strategy vis-à-vis standard control design approaches. The ensuing simula-
tion results show the superiority of the analytical technique developed in this paper for a
wide range of power operating conditions.

Looked at in this light, the developed results in this paper for delay-dependent passiv-
ity (Theorem 2.3), state-feedback passivation (Theorem 3.1), and output-feedback passi-
vation (Theorem 4.1) give less conservative results than those of [9, 15–19, 21–25] since
they provide a new state transformation for delay-dependent passive analysis and synthe-
sis. Additionally, our control approach is technically superior to the techniques of [24, 29]
since it establishes delay-dependent dynamic controllers for interconnected time-delay
systems.

Notations and facts. In the sequel, we use Wt, W−1, and λ(W) to denote, respectively, the
transpose, the inverse, and the eigenvalues of the induced norm of any square matrix W .
We use W > 0 (< 0) to denote a symmetric positive definite (negative definite). Some-
times, the arguments of a function will be omitted in the analysis when no confusion
can arise. The symbol • will be used in some matrix expressions to induce a symmetric
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structure, that is, if given matrices L= Lt and R= Rt of appropriate dimensions, then

[
L+M +• •

N R

]
=
[
L+M +Mt Nt

N R

]
. (1.1)

Fact 1.1. For any real matrices Σ1 and Σ2 with appropriate dimensions, it follows for all
α > 0 that

Σ1Σ2 +Σt
2Σ

t
1 ≤ α−1Σ1Σ

t
1 +αΣt

2Σ2. (1.2)

2. Passivity of interconnected time-delay systems

We consider a class of interconnected time-delay systems Σo,

Σo : ẋ(t)= [Ao +E
]
x(t) +Adx(t− τ) +Γw(t), (2.1)

x(s)= κ(s), s∈ [−τ,0], (2.2)

z(t)=Goxj(t) +Gdxj(t− τ) +Φw(t), (2.3)

to be composed of ns coupled subsystems Σo j described by

Σo j : ẋ j(t)= Aojxj(t) +Adjxj
(
t− τj

)
+

ns∑
k=1

Ejkxk(t) +Γ jwj(t), (2.4)

xj(s)= κj(s), s∈ [− τj ,0
]
, (2.5)

zj(t)=Gojxj(t) +Gdjxj
(
t− τj

)
+Φ jwj(t), (2.6)

where xj(t)∈Rnj is the state vector, wj(t)∈Rqj is the exogenous input (either a control
input or reference signal), zj(t)∈Rqj is the controlled output, and τj ∈ [0,τ∗j ] is a known
constant delay factor. The matrices Aoj , Adj , Goj , Gdj , Γ j , and Φ j are known real constant
matrices of appropriate dimensions. The links between the matrices of system Σo and
subsystems Σo j , j = 1, . . . ,ns, are quite standard. From now onwards, we focus on analysis
and design at the subsystem level. Let Xj(t,κj) denote the state trajectory of system Σo j

from the initial condition {xoj ,κj} and let Xj(t,0) be the corresponding trajectory with
zero initial conditions.

Definition 2.1. System Σo is called passive if there exist scalars βj ≥ 0, j = 1, . . . ,ns, such
that for all tp j ≥ 0 and for all Xj(t,0) of subsystems Σo j , j = 1, . . . ,ns,

2
∫ tp j

0
wt

j(s)zj(s)ds≥−βj

∫ tp j

0
wt

j(s)wj(s)ds. (2.7)
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Remark 2.2. It should be observed that Definition 2.1 provides less conservative perfor-
mance results for a wide class of dynamical systems [14]. There are other alternative ap-
proaches based on port-controlled Hamiltonian systems with dissipation [8, 28] by con-
sidering the Hamiltonian function as the total energy (potential and kinetic energy) in
the mechanical systems. These, however, require an additional a priori modeling effort
in contrast to the direct state-space model (2.2)–(2.6) which permits incorporating time-
delay factors.

Our purpose in this paper is to develop delay-dependent criteria for the interconnected
time-delay system Σo using local information from subsystems (2.5)–(2.6) that render the
system internally stable and passive based on Definition 2.1 and subsequently construct
methods for feedback passivation.

2.1. State transformation. Introduce the state transformation

σj(t)= xj(t) +
∫ t

t−τj
Adjxj(s)ds (2.8)

into (2.5) to yield

σ̇ j(t)=
[
Aoj +Adj

]
xj(t) +Γ jwj(t) +

ns∑
k=1

Ejkxk(t)

=Aodjx(t) +Γ jwj(t) +
ns∑
k=1

Ejkxk(t).

(2.9)

Define the augmented state vector

ζj(t)=
[
σj(t)
εjxj(t)

]
∈R2n. (2.10)

By combining (2.5) and (2.8)–(2.10) and taking the limit εj → 0, we obtain the trans-
formed system

(
ΣToj

)
: ζ̇ j(t)=Λo jζ j(t) +

∫ t

t−τj
Υ j ζ j(s)ds+ Γ̄ jwj(t) +

ns∑
k=1

Ē jkζk(t), (2.11)

ζj(t)= κ̄ j(t), t ∈ [− 2τj ,0
]
, (2.12)

zj(t)= Ḡ jζ j(t) + Ḡdjζ
(
t− τj

)
+Φ jwj(t), (2.13)
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along with

Γ̄ j =
[
Γ j

0

]
, Ḡo j =

[
0 Goj

]
, Ḡdj =

[
0 Gdj

]
, Ē jk =

[
0 Ejk

0 0

]
,

Λo j =
[

0 Aodj

−I I

]
, Υ j =

[
0 0

0 Adj

]
, Rj =

[
Rσ j 0

0 Rx j

]
,

E1 =
[
I

0

]
, E2 =

[
0

I

]
, P̄ j =UjP j , Uj =

[
I j 0

0 0

]
, P j =

[
Pσ j 0

Pdj Px j

]
,

(2.14)

Πo j =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−Pdj −Pt
dj +Rσ j −Px j +Pt

dj

+Pt
σ jAodj+

Pt
σ j

ns∑
k=1

Ek j

• Px j +Pt
x j+

Rx j + τjQj

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Πr j =
⎡
⎣τjPt

djAdj

τ jP
t
x jAdj

⎤
⎦ , Πt j =

⎡
⎣Pt

σ jΓ j

−Gt
oj

⎤
⎦ .

(2.15)

Theorem 2.3. Consider system ΣToj . Given matrices 0 < Qj =Qt
j ∈Rnj×nj , 0 < Rj = Rt

j ∈
R2nj×2nj , let matrices 0 < Pσ j , Pdj , Px j and scalar βj ≥ 0 satisfy the linear matrix inequalities
(LMIs)

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Πo j Πr j Πt j

• −τjQj 0

• •
−βjI −Φt

j

−Φ j +GdjR
−1
x j G

t
dj

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
< 0,

⎡
⎢⎢⎢⎣
−Φ j −Φt

j β jI Gdj

• βjI 0

• • −Rx j

⎤
⎥⎥⎥⎦ < 0,

(2.16)

then system ΣToj is passive in the sense of Definition 2.1.

Proof. For given Qj = Qt
j > 0 and Rj = Rt

j > 0, let the Lyapunov functional Vj(·) of the
transformed system (2.11)–(2.13) be selected as

Vj
(
t,ζj
)= ζtj(t)P̄

t
j ζ j(t) +

∫ t

t−τj
ζ tj(s)Rjζj(s)ds+

∫ t

t−τj

∫ t

t+θj
ζ tj(s)E2QjE

t
2ζj(s)dsdθj . (2.17)

Evaluating of the derivative of V(t,ζj) with respect to t yields

V̇ j
(
t,ζj
)= 2ζtj(t)P̄

t
j ζ̇ j(t) + τjζ

t
j(t)E2QjE

t
2ζj(t)−

∫ 0

−τj
ζ tj
(
θj
)
E2QjE

t
2ζj
(
θj
)
dθj

+ ζtj(t)Rjζj(t)− ζtj
(
t− τj

)
Rjζj

(
t− τj

)
.

(2.18)
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Focusing on the first term of (2.18) and using (2.13)–(2.17), we obtain

2ζtj(t)P̄
t
j ζ̇ j(t)= 2σt(t) Pt

σ σ̇(t)

= 2ζtj(t)P
t
j

[
σ̇ j(t)

0

]
= 2ζtj(t)P

t
j

⎡
⎢⎢⎢⎢⎣
Aodjx(t) +Γ jwj(t) +

ns∑
k=1

Ejkxk(t)

−σj(t) + xj(t) +
∫ t

t−τj
Adjx(s)ds

⎤
⎥⎥⎥⎥⎦

= 2ζtj(t)P
t
jΛo jζ j(t) + 2ζtj(t)P

t
j Γ̄ jwj(t) + 2

∫ t

t−τj
ζ tj(s)P

t
jΥ j ζ j(s)ds

+ 2ζtj(t)P
t
j

ns∑
k=1

Ē jkζk(t).

(2.19)

Hence, it follows from (2.18)-(2.19) that

V̇ j
(
t,ζj
)= ζtj(t)

[
Λt
o jP j +Pt

jΛo j +Rj
]
ζj(t) + 2ζtj(t)P

t
j Γ̄ jwj(t)

+ 2
∫ t

t−τj
ζ tj(s)P

t
jΥ j ζ j(s)ds+ τjζ

t
j(t)E2QjE

t
2ζj(t)− ζt

(
t− τj

)
Rjζj

(
t− τj

)

−
∫ t

t−τj
ζ tj(s)E2QjE

t
2ζj(s)ds+ 2ζtj(t)P

t
j

ns∑
k=1

Ē jkζk(t).

(2.20)

By Fact 1.1, we have

2
∫ t

t−τj
ζ tj(s)P

t
jΥ j ζ j(s)ds= 2

∫ t

t−τj
ζ tj(s)P

t
jE2Adjxj(s)ds

≤ τjζ
t
j(t)P

t
jE2AdjQ

−1
j At

djE
t
2P

t
j ζ j(t) +

∫ t

t−τj
xtj(s)Qjxj(s)ds

= τjζ
t
j(t)P

t
jE2AdjQ

−1
j At

djE
t
2P j ζ j(t) +

∫ t

t−τj
ζ tj(s)E2QjE

t
2ζj(s)ds.

(2.21)

From (2.20)-(2.21), we get

V̇ j
(
t,ζj
)=ζtj(t)

[
Λt
o jP j +Pt

jΛo j +Rj + τjPtE2AdjQ
−1
j At

djE
t
2P j + τjE2QjE

t
2

+Pt
j

ns∑
k=1

Ē jk +
ns∑
k=1

Ēt
jkP j

]
ζj(t) + 2ζtj(t)P

t
j Γ̄ jwj(t)− ζtj

(
t− τj

)
Rjζj

(
t− τj

)
.

(2.22)
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By incorporating the identity
∑ns

j=1

∑ns
k=1 Ē jkζk(t) = ∑ns

k=1

∑ns
j=1 Ēk jζ j(t) and (2.13) into

(2.22) and completing the squares, it yields

V̇ j
(
t,ζj
)− 2ztj(t)wj(t)−βjw

t
j(t)wj(t)

=ζtj(t)

[
Λt
o jP j +Pt

jΛo j +Rj + τjPtE2AdjQ
−1
j At

djE
t
2P j

+ τjE2QjE
t
2 +Pt

j

ns∑
k=1

Ē jk +
ns∑
k=1

Ēt
jkP j

]
ζj(t) + 2ζtj(t)P

t
j Γ̄ jwj(t)

−βjw
t
j(t)wj(t)− ζtj(t)Ḡ

t
jwj(t)−wt

j(t)Ḡ jζ j(t)−wt
j(t)(Φ j +Φt

j)wj(t)

− ζtj
(
t− τj

)
Rjζj

(
t− τj

)− ζtj
(
t− τj

)
Ḡt
djwj(t)−wt

j(t)Ḡdjζ j
(
t− τj

)

< ζtj(t)

[
Λt
o jP j +Pt

jΛo j +Rj + τjPtE2AdjQ
−1
j At

djE
t
2P j +Pt

j

ns∑
k=1

Ēk j +
ns∑
k=1

Ēt
k jP j

+τjE2QjE
t
2 +
(
Pt

j Γ̄ j − Ḡt
j

)(
Φt

j +Φ j +βjI − ḠdjR
−1
j Ḡt

dj

)−1(
Γ̄tjP j − Ḡ j

)]
ζj(t).

(2.23)

Applying the Schur complements to (2.23) and in view of LMIs (2.15) with (2.16), it
follows by integrating (2.23) with respect to t over the period 0 �→ tp that (2.7) holds and
hence system ΣTo is passive in the sense of Definition 2.1. �

3. State-feedback passivation

We now build on the foregoing results by considering the feedback passivation problem,
that is, designing a feedback controller to render the closed-loop time-delay system pas-
sive. Extending on system (ΣJo), we consider a class of time-delay systems of the form

Σ j : ẋ j(t)=Aojxj(t) +Adjxj
(
t− τj

)
+

ns∑
k=1

Ejkxk(t) +Bojuj(t) +Γ jwj(t), (3.1)

xj(s)= κj(s), s∈ [− τj ,0
]
, (3.2)

zj(t)=Gojxj(t) +Gdjxj
(
t− τj

)
+Φ jwj(t), (3.3)

where uj(t)∈Rr j is the part of the control input used for feedback. Considering initially
the case of instantaneous state-feedback passivation, we use the decentralized control law
uj(t)= Kj xj(t) such that its application to (3.2) under the transformation (2.8) yields

σ̇ j(t)=Aok j xj(t) +
ns∑
k=1

Ejkxk(t) +Γ jwj(t), Aok j = Aoj +BojKj . (3.4)
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Then the transformed system becomes

(
ΣTk

)
: ζ̇ j(t)=Λok jζ j(t) +

∫ t

t−τj
Υ j ζ j(s)ds+

ns∑
k=1

Ē jkζk(t) + Γ̄ jwj(t),

ζj(s)= κ̄ j(s), s∈ [− 2τj ,0
]
,

zj(t)= Ḡo jζ j(t) + Ḡdjζ j
(
t− τj

)
+Φ jwj(t),

(3.5)

where

Λok j =
[

0 Aodj +BojKj

−I I

]
. (3.6)

Define the following matrices:

Āt
odj =

[
At
odj I

]
, Zj =

[
0
Xσ j

]
, B̄o j =

[
Boj

0

]
,

Yj =
[
Xdj Xx j

]
, Wj =

[
Wdj Wxj

]
,

(3.7)

where

P−1
j =

[
Xσ j 0

Xdj Xx j

]
, Xσ j = P−1

σ j , Xxj = P−1
x j , Xdj =−XxjPdjXσ j . (3.8)

The following theorem establishes the main result.

Theorem 3.1. Consider system ΣTk. Given matrix 0 < Qj = Qt
j ∈ Rnj×nj , let matrices Yj ,

Zj , Wj and scalar βj ≥ 0 satisfy the system of LMIs

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

Πc j τ jE2Adj τjY
t
jE2 Γ̄ j −Yt

jG
t
o j

• −τjQj 0 0

• • −τjQj 0

• • •
−βjI −Φt

j

−Φ j + ḠdjR
−1
j Ḡt

dj

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
< 0,

⎡
⎢⎢⎣
−Φ j −Φt

j β jI Ḡdj

• βjI 0

• • −Rj

⎤
⎥⎥⎦ < 0,

(3.9)

then system ΣTk is passive under the control law u(t)= Kx(t) in the sense of Definition 2.1,
where

Πc j = Yt
j Ā

t
odj + ĀodjYj −E1Z

t
j −ZjE

t
1 + B̄o jWj +Wt

j B̄
t
o j +

ns∑
k=1

Ek jE1Yj +Yt
jE

t
1

ns∑
k=1

Et
k j

(3.10)

and the state-feedback gain is given by Kj = [WjE2][YjE2]−1.
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Proof. By Theorem 2.3 and taking into consideration (2.14)-(2.15), it is easy to see that
passivity of system ΣTk implies that the inequality

Λt
o jP j +Pt

jΛo j +Rj + τjPtE2AdjQ
−1
j At

djE
t
2P j +Pt

j

ns∑
k=1

Ēk j +
ns∑
k=1

Ēt
k jP j

+ τjE2QjE
t
2 +
(
Pt

j Γ̄ j − Ḡt
j

)(
Φt

j +Φ j +βjI − ḠdjR
−1
j Ḡt

dj

)−1(
Γ̄tjP j − Ḡ j

)
< 0

(3.11)

holds. Premultiplying (3.11) by P−tj , postmultiplying by P−1
j , using (3.7)-(3.8) and the

Schur complements, we obtain the LMI (3.9) and the proof is completed. �

Remark 3.2. Had we considered delayed state-feedback passivation using the decentral-
ized control law uj(t)= Kdjxj(t− τj), we would have used the state transformation as

σj(t)= xj(t) +
∫ t

t−τj

[
Adj +BojKdj

]
x(s)ds. (3.12)

On substituting (3.12) into (3.2) with (2.14)-(2.15), it yields

σ̇ j(t)=
[
Aodj +BojKdj

]
xj(t) +

ns∑
k=1

Ejkxk(t) +Γ jwj(t). (3.13)

A little algebra gives the transformed system

(
ΣTdk

)
: ζ̇ j(t)=Λodk jζ j(t) +

∫ t

t−τj
Υ j ζ j(s)ds+

ns∑
k=1

Ē jkζk(t) + Γ̄ jwj(t),

ζj(s)= κ̄ j(s), s∈ [− 2τj ,0
]
,

zj(t)= Ḡo jζ j + Ḡdjζ j
(
t− τj

)
+Φ jwj(t),

(3.14)

where

Λodk j =
[

0 Aodj +BojKdj

−I I

]
. (3.15)

Taking into account the matrices of (3.7)-(3.8), we could have established a result parallel
to that of Theorem 3.1 by using Kj → Kdj . It is thus not surprising to find that results on
both instantaneous and delayed decentralized state-feedback passivation are equivalent.
This, in fact, strengthens the state transformations (2.8) or (3.12) as vehicles to derive
pertinent delay-dependent dynamic models.
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4. Output-feedback passivation

We make another generalization of the previous section by considering passivation using
dynamic output feedback for the system

(
ΣJO

)
: ẋ j(t)=Aojx(t) +Adjxj

(
t− τj

)
+Bojuj(t) +

ns∑
k=1

Ejkxk(t) +Γ jwj(t), (4.1)

xj(s)= κj(s) s∈ [− τj ,0
]
, (4.2)

yj(t)= Cojxj(t) +Eojxj
(
t− τj

)
+Dojuj(t), (4.3)

zj(t)=Gojxj(t) +Gdjxj
(
t− τj

)
+Φ jwj(t), (4.4)

where yj(t) is the vector of output measurements. We consider the following dynamic
feedback controller:

(
ΣC j
)

: ẋc j(t)= Aojxc j(t) +Bojuj(t) +Kcj
[
yj(t)−Cojxc j(t)

]
,

uj(t)=Gcjxc j(t),
(4.5)

where Kcj , Gcj are the unknown gains. From (4.2)–(4.5), we get the combined system

(
ΣJCO j

)
: χ̇ j(t)= Âo jχ j(t) + Âdjχ j

(
t− τj

)
+

ns∑
k=1

Ē jkχk(t) + Γ̄ jwj(t),

zj(t)= Ĝo jχ j(t) + Ĝdjχ j
(
t− τj

)
+Φ jwj(t),

(4.6)

where

χj(t)=
[
xj(t)

xc j(t)

]
, Âo j =

[
Aoj BojGc j

Kc jCoj Ac +BoGc +Kc
(
DoGc−Co

)
]

,

Âdj =
[

Adj 0

KcjEoj 0

]
, Ĝo j =

[
Goj 0

]
, Ĝdj =

[
Gdj 0

]
.

(4.7)

Introducing the state transformation

σ̂ j(t)= χj(t) +
∫ t

t−τj
Âdjx(s)ds (4.8)

which converts (4.6) into

˙̂σj(t)=
[
Âo j + Âdj

]
χj(t) +

ns∑
k=1

Ē jkχk(t) + Γ̂ jwj(t)

= Âodjχ j(t) +
ns∑
k=1

Ē jkχk(t) + Γ̂ jwj(t),

(4.9)
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the transformed system becomes

(
ΣTCOj

)
: ξ̇ j(t)=

⎡
⎣ ˙̂σ j

χ̇ j

⎤
⎦=Λco jξ j(t) +

∫ t

t−τj
Υco jξ j(s)ds+

ns∑
k=1

Ê jkξk(t) + Γ̂ jwj(t),

zj(t)=Gcojξ j(t) +Gdojξ j
(
t− τj

)
+Φ jwj(t),

(4.10)

where

Γ̂ j =
[
Γ̄ j

0

]
, Gcoj =

[
0 Ĝo j

]
, Gdoj =

[
0 Ĝdj

]
, Λco j =

[
0 Âodj

−I I

]
,

Υco j =
[

0 0
0 Âdj

]
, Ê jk =

[
0 Ē jk

0 0

]
.

(4.11)

By using the Schur complements, it is not difficult to deduce from Theorem 2.3 that given
matrix � j =�t

j ∈R2nj×2nj , � j =�t
j ∈R4nj×4nj , it follows that system (ΣTCOj ) is passive if

there exists matrix Ω j =Ωt
j ∈R4nj×4nj satisfying the inequality

Λt
co jΩ j +Ωt

jΛco j + τjE2Âdj� j Â
t
dj
Et

2 + τjΩ
t
jE2� jE

t
2Ω j + � j +Ωt

j

ns∑
k=1

Ê jk +
ns∑
k=1

Êt
jkΩ j

+
(
Ωt

j Γ̂ j −Gt
co j

)(
Φt

j +Φ j +βjI −GdjR
−1
j Gt

dj

)−1(
Γ̂tjΩ j −Gcoj

)
< 0,

(4.12)

where

Ω j =
[
Ωσ j 0

Ωdj Ωx j

]
, � j =

[
�σ j 0

0 �x j

]
, � j =

[
Rj 0

0 0

]
,

Hj =Φt
j +Φ j +βjI −GdjR

−1
j Gt

dj .

(4.13)

We are now in position to present the following result.

Theorem 4.1. System ΣJCO j is passive by the dynamic output feedback controller ΣC j if,
given matrices 0 < �σ j =�t

σ j , 0 < �x j =�t
x j , 0 < �σ1 j =�t

σ1 j , 0 < �x1 j =�t
x1 j , 0 < �x2 j =

�t
x2 j , there exist matrices Ωσ1 j , Ωσ2 j , Ωd1 j , Ωd2 j , Ωx1 j , Ωx2 j and scalar βj ≥ 0 satisfying the
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system of equations and LMIs

⎡
⎣Πd1 j τ jΩ

t
d1 j

• −τj�σ j

⎤
⎦ < 0,

⎡
⎢⎢⎣
Ωx2 j +Ωt

x2 j
+ �x2 j τΩt

x2 j
τ jLj

• −τj�2 j 0

• • −τj�x j

⎤
⎥⎥⎦ < 0,

[
Πd2 j τΩt

d2 j

• −τj�x j

]
< 0,

⎡
⎢⎢⎢⎢⎢⎣

Ωx1 j +Ωt
x1 j

+ �x1 j τ jΩt
x1 j

τ jAdj Ωx1 j G
t
o j

• −τ�σ 0 0

• • −τj�x j 0

• • • −Hj

⎤
⎥⎥⎥⎥⎥⎦ < 0,

(4.14)

Ωσ1 j =Ωd1 j +Ωt
x1 j
At
odj + τjΩ

t
x1 j

�σ jΩd1 j −Γ jHjGojΩ
t
x1 j

,

Ωσ2 j =Ωd2 j +Ωt
x2 j

(
Aoj +BojD

†
o jCoj

)t
+ τjΩ

t
x2 j

�x jΩd2 j ,
(4.15)

where

Lj =Ωt
d2 j
Gt
c jB

t
o jΩ

−1
d1 j

(
Coj +Eoj

)†
Eoj ,

Πd1 j =AodjΩd1 j +Ωt
d1 j
At
odj +Γ jH

−1
j Γtj + �σ1 j ,

Πd2 j =
(
Aoj +BojD

†
o jCoj

)
Ωd2 j +Ωt

d2 j

(
Aoj +BojD

†
o jCoj

)t
+ �σ2 j ,

(4.16)

and the feedback gains are given by

Gcj =D†o jCoj , Kcj =−Ωt
d2 j
Gt
c jB

t
o jΩ

−1
d1 j

(
Coj +Eoj

)†
. (4.17)

Proof. Using the block-diagonal matrices

Ωσ j =
[
Ωσ1 j 0

0 Ωσ2 j

]
, Ωx j =

[
Ωx1 j 0

0 Ωx2 j

]
, Ωdj =

[
Ωd1 j 0

0 Ωd2 j

]
, (4.18)

then straightforward expansion of (4.12) with some matrix manipulations, we get equa-
tions and LMIs (4.14)-(4.15) such that inequality (4.12) is satisfied. �

Remark 4.2. It is readily seen that the developed results for delay-dependent passivity
(Theorem 2.3), state-feedback passivation (Theorem 3.1), and output-feedback passiva-
tion (Theorem 4.1) give less conservative results than those of [9, 15–19, 21–25] since
they provide a new state transformation for delay-dependent passive analysis and syn-
thesis. This represents our first major contribution in this paper. On the other hand, our
control approach is technically superior to the techniques of [24, 29] since it establishes
delay-dependent dynamic controllers for interconnected time-delay systems.



M. S. Mahmoud and A. Ismail 13
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ΔPd3
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ΔPt31
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Δ f1

Area 2

Δ f2

Area 3

Δ f3

Figure 5.1. A schematic of three-area reheat power systems.

5. Application to power systems

In this section we demonstrate the application of the foregoing analytical developments
to multiarea reheat power systems, a schematic layout of which in case of three-area is
shown in Figure 5.1.

We will show that the resulting linearized dynamical model can be cast into the for-
mat (2.6). In modeling the power system, we note that the overall system model would
essentially be an aggregate of the single-area reheat models in addition to the power in-
terchange across the tie lines. By considering the dynamics of individual block of a single-
area reheat power system as well as the integral area control [6], the corresponding gov-
erning relations are derived below. First, the dynamic model of the generator is described
by [29]

δ̇(t)= ωoΔω(t),

Δω̇(t)= 1
M

[
PM + rg(t) +KdΔω(t)−Pe

]
,

Ė′q(t)= 1
T′do

[
Ef d(t)− [xd − x′d

]
id −E′q(t)

]
,

(5.1)

where

id =
Eq−Ecosδ

xe + xq
, Eq = E′q +

[
xd − x′d

]
id, Pe =

E′qE sinδ[
xd − x′d

] , (5.2)
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which leads to

id =
Eq−Ecosδ

xe + xq− xd + x′q
. (5.3)

Then the automatic excitation voltage regulator is described by

Ė f d(t)= KA

TA

[
Vr −Vt +Vpss(t)

]− Kf d(t)

TA
. (5.4)

The governor and the power system stabilizer are represented by

ġ = 1
Tg

[
bΔω(t− τ)− g(t)

]
, rg = aΔω(t− τ) + bg(t),

ẏ1(t)= y2(t), ẏ2(t)= −1
T2TQ

[
y1(t) +

(
T2 +TQ

)
y2(t)−Δω(t− τ)

]
,

Vpss = −KJ

KA

[−T1

T2
y1(t) +

TQ−T1T2−T1TQ

T2
y2(t) +

T1

T2
Δω(t− τ)

]
.

(5.5)

By linearizing the dynamical relationships (5.1)–(5.5) around an operating point (δo,ωo,
E′qo,Ef do,go, y1o, y2o) and defining the deviations

Δδ = δ− δo, Δω = ω−ωo, ΔE′q = E′q−E′qo, ΔEf d = Ef d −Ef go,

Δg = g − go, Δy1 = y1− y1o, Δy2 = y2− y2o,
(5.6)

we introduce the state and input vectors as xt = [Δδ,Δω,ΔE′q,ΔEf d,Δg,Δy1,Δy2] and
u = [ΔPM , (Vref −Vt)]. Then the resulting linearized model can be cast into the form
(2.6)-(2.7) with

Ao =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 ωo 0 0 0 0 0

G1
Kd

M
G2 0

b

M
0 0

G3 0 G4
1
T
′
do

0 0 0

0 0 0 − 1
TA

0 G5 G6

0 0 0 0 − 1
Tg

0 0

0 0 0 0 0 0 1

0 0 0 0 0 G7 G8

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,
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Ad =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0

0
a

M
0 0 0 0 0

0 0 0 0 0 0 0

0 K9 0 0 0 0 0

0 K10 0 0 0 0 0

0 0 0 0 0 0 0

0 K11 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Bo =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0

1
M

0

0 0

0
KA

TA

0 0

0 0

0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Ct
o =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0
0 1
0 0
0 0
0 0
0 0
0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Ct
d =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0
0 1
0 0
0 0
0 0
0 0
0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(5.7)

where

G1 =−
E′qoEcosδo
M
[
xe + x′d

] , G2 =−
E′qoE sinδo
M
[
xe + x′d

] , G3 =−E sinδo
xd − x′d

T′do
[
xe + xq− xd + x′d

] ,

G4 =−
xe + xq

T′do
[
xe + xq− xd + x′d

] , G5 = KJT1

TAT2
, G6 =−KJ

[
TQ−T1T2−T1TQ

]
TAT2

,

G7 =− 1
T2TQ

, G8 = T2 +TQ

T2TQ
, G9 =−KJT1

TAT2
, G10 = b

Tg
, G11 = 1

T2TQ
.

(5.8)

It should be observed that the delay factor τ occurs within the dynamics of the gover-
nor and the power system stabilizer and the turbine reheat power. This is typical in large
power systems and an upper bound on the delay factor can be estimated using offline sim-
ulation. This confirms our observation that the linearized dynamical model of multiarea
reheat power systems fits nicely the frame of interconnected time-delay systems.

5.1. Numerical data. Assuming identical power areas, the numerical values of the differ-
ent parameters of any of the areas are given by

(i) synchronous machine parameters

ωo = 314.16rad/s, M = 6.92, Kd =−0.027, xd = 1.24pu,

xq = 0.743pu, x′d = 0.022pu, x = 0.8pu, PM = 0.437pu,

E = 1pu, T′do = 5s, δo = 20o, E′qo = 1.05;

(5.9)
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(ii) voltage regulator and excitation system

KA = 250, TA = 0.001s, Vref = 1pu; (5.10)

(iii) governor system parameters

a=−0.000124, b =−0.17, Tg = 0.25s; (5.11)

(iv) power system stabilizer

KJ = 12, TQ = 2.5s, T1 = 0.1s, T2 = 0.03s. (5.12)

The upper bound on the time-delay τ∗ is 0.65. Application of Theorem 4.1 yields the
gains of the dynamic output feedback controller:

Kcj=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 −0.03
−0.02 1.25

0 −0.02
0 −0.001
0 −0.006
0 −0.07

0.004 −0.52

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Gcj=
[−0.04 −0.0006 0.4 0.02 0.19 0 0

0 −0.0001 0 0.004 0− 0.16 3.6

]
.

(5.13)

5.2. Simulation results. Extensive simulations were carried out to examine the capabil-
ities of the developed passivity-based control design and to compare the ensuing results
with the �∞-controller developed in [29]. The three-area interconnected power system
was subjected to a constant load disturbance of 10% of the rated capacity. For purpose of
comparison with other related works and due to symmetry, we consider the case when the
disturbance is affecting one area only (say, area 1). Here the tie-line power interchange er-
ror between the other two areas (area 2 and area 3 in this case) is zero. It should be noted
that all tie-line power interchange errors between the different areas with and without
integral control are zero. This means that the tie lines between the different areas cannot
carry any extra interchanging power due to the load increase in the areas.

The simulation results of the areas are displayed in Figures 5.2–5.7. In Figures 5.2 and
5.3, the frequency error and the inter-area power exchange error in area 1 are plotted
for the cases with and without integral control using the developed passivity method.
The corresponding results for areas 2 and 3 are plotted in Figures 5.4 and 5.5. Finally,
in Figures 5.6 and 5.7, the frequency error and the inter-area power exchange error are
plotted using three methods: standard linear-quadratic, the �∞-controller of [29], and
the passivity method developed in this paper. From these results, we observe that the
steady-state frequency errors in each area were eliminated in a relatively short time. The
inter-area tie-line power exchange errors are zero due to the fact that each area is capable
of absorbing its own load increase.

In comparison to other established control design methods, the developed passivity-
based control design for the interconnected power system has been proven to attain a
satisfactory performance.
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Figure 5.2. Frequency error in area 1: with integral control (solid line); without integral control
(dashed line).
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Figure 5.3. Inter-area power exchange error in area 1: with integral control (solid line); without inte-
gral control (dashed line).
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Figure 5.4. Frequency errors: in area 2 (solid line); in area 3 (dashed line).

302520151050

Time (s)

−0.05

−0.045

−0.04

−0.035

−0.03

−0.025

−0.02

−0.015

−0.01

−0.005

0

In
te

r-
ar

ea
po

w
er

ex
ch

an
ge

er
ro

r
(M

W
-p

u
)

Area 2
Area 3

Figure 5.5. Inter-area power exchange errors: in area 2 (solid line); in area 3 (dashed line).
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Figure 5.6. Frequency error in area 1: LQR method (solid line); �∞ method [29] (dashed line); pas-
sivity method (dashed-dotted line).
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Figure 5.7. Inter-area power exchange error in area 1: LQR method (solid line); �∞ method [29]
(dashed line); passivity method (dashed-dotted line).
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6. Conclusions

A new state transformation has been developed to exhibit the delay-dependence dynam-
ics of a class of linear interconnected time-delay systems for the purpose of investigating
the problems of passivity and passivation. It has been established that the passivity con-
dition can be cast in a linear matrix inequality (LMI) format at the subsystem level. For
state-feedback passivation, it is proven that it is indifferent to use instantaneous or de-
layed decentralized state feedback. The case of output-feedback passivation is also treated
using local dynamic controllers. Application to multiarea reheat power systems has been
given to support the analytical results.
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