3 research outputs found

    Recuperação de temperatura de superfície terrestre da radiância termal coletada pelo sensor TIRS/Landsat 8 : aplicações de medidas de campo e laboratório

    Get PDF
    A temperatura da superfície terrestre (Land surface temperature - LST) é um importante parâmetro na investigação de mudanças ambientais e climáticas em várias escalas. Entretanto, estimar esse parâmetro da radiação emitida na região do infravermelho termal (TIR) é uma tarefa difícil, pois as radiações medidas pelos sensores dos satélites são fortemente afetadas por efeitos atmosféricos. Todos métodos de recuperação de LST requerem validação com medidas de campo. Porém, a validação deste tipo de dado é um desafio, visto que a LST muda rapidamente no tempo e as medidas devem ser realizadas em conjunto com a passagem do sensor. Além disso, a maioria das metodologias são desenvolvidas e testadas com foco no hemisfério norte. Tendo em vista que maneiras operacionais de se obter LST devem ser constantemente investigadas, o objetivo desta pesquisa foi estudar o efeito do uso de medidas de emissividade de laboratório tomadas com base em temperaturas na determinação da LST a partir de dados de sensoriamento remoto orbital. Ademais, pretendeu-se realizar uma análise comparativa entre os algoritmos single-channel mais recentes existentes na literatura, aplicados à banda 10 (10,6-11,19 μm) do Landsat 8 TIRS. Os algoritmos considerados foram: Single-Channel Generalizado (SCG), Improved Single-Channel (ISC) e Improved Mono-Window (IMW). Um campo de dunas costeiras foi escolhido como área de estudo. Dois conjuntos de medidas de emissividade de laboratório foram construídos com amostras de campo em diferentes temperaturas com uso de um Fourier Transform Infrared (FT-IR). Dados de emissividade e temperatura foram obtidos na área de estudo concomitamente com a passagem do sensor. A equação de transferência radiativa (Radiative Transfer Equation - RTE) com parâmetros de perfis atmosféricos globais foi testada como forma de validação de dados. Uma variação de aproximadamente 2% na emissividade em relação à temperatura foi observada, podendo ser negligenciada. O FT-IR apresenta limitações quanto ao período para adquirir estabilidade, porém respeitando esta limitação e realizando abordagem correta de calibração, medidas laboratoriais podem atingir ótima acurácia e substituir a validação de campo. Bibliotecas espectrais disponíveis de emissividade demonstraram ser também uma alternativa válida. Todos métodos single-channel avaliados são adequados para obter LST; no entanto, o ISC forneceu resultados superiores em todas as análises, produzindo maior R² (0,99978) e menor RMSE (0.019) em relação aos demais.Land surface temperature (LST) is an important parameter in the investigation of environmental and climatic changes at various scales. However, estimating this parameter from the radiation emitted in the thermal infrared (TIR) region is a difficult task because the radiation measured by the satellite sensors is strongly affected by atmospheric effects. All LST retrieval methods require validation with field measurements. Nonetheless, the validation of this type of data is a challenge because the LST changes rapidly in time and the measurements must be performed togheter with the sensor overpass. In addition, most methodologies are developed and tested focusing on the Northern Hemisphere. Considering that operational ways of obtaining LST should be constantly investigated, the aim of this paper was to study the effect of the use of temperature-based laboratory measurements in the determination of the emissivity and LST retrieval from orbital remote sensing data. Moreover, it was intended to perform a comparative analysis among the most recent single-channel algorithms available on the literature, applied to band 10 (10.6-11.19 μm) of the Landsat 8 TIRS. The algorithms considered were: Single-channel generalized (SC), Improved Single-channel (ISC) and Improved Mono-window (IMW). A field of coastal dunes was chosen as study area. Two sets of laboratory emissivity measurements were performed with field samples at different temperatures using a Fourier Transform Infrared (FT-IR). Emissivity and temperature data were obtained in the study area concomitantly with the satellite overpass. The Radiative Transfer Equation (RTE) with parameters of global atmospheric profiles was tested as a method of validation. A variation of approximately 2% in the emissivity in relation to the temperature was observed, which could be neglected. The FT-IR presents limitations on the period to acquire stability, however as long as this limitation is respected and the calibration approach correctly carried out, laboratory measurements can achieve optimum accuracy and replace field validation. Available spectral libraries of emissivity have also proved to be a good alternative. All evaluated single-channel methods are suitable for obtaining LST; however, ISC provided superior results in all analyzes, producing higher R² (0.99978) and lower RMSE (0.019) relative to the other algorithms tested

    Correção atmosférica de imagens termais utilizando perfis verticais de alta resolução simulados por um modelo de mesoescala

    Get PDF
    A estimativa da temperatura da superfície terrestre ( LST ) por sensoriamento remoto no infravermelho termal (TIR) é dependente d a realização de uma correção atmosférica apropriada que , em geral, necessita de perfis atmosféricos como dados de entrada. Dados globais de reanálise são uma alternativa prática para a obtenção desses perfis, mas podem apresentar limitações. Nesse contexto, o presente estudo teve como objetivo analisar a utilização do modelo numérico Weather Research and Forecasting (WRF) para gerar perfis verticais de alta resolução , refinando dados de reanálise , visando a correção atmosférica no TIR para o cálculo de valores de LST. Para tal, foram realizadas simulações com o modelo WRF com dados de reanálise do NCEP Climate Forecast System Version 2 (CFSv2) como condições iniciais e utilizando duas grades aninhadas com resoluções horizontais de 12 km (G12) e 3 km (G03). Para estimar a LST, foram empregados: o método da inversão direta da Equação de Transferência Radiativa (RTE) , o modelo MODTRAN e valores de radiância da banda 10 do Landsat 8 TIRS. A pesquisa avaliou o desempenho do modelo através dos perfis verticais, dos parâmetros atmosféricos de correção (transmitância atmosférica e radiâncias upwelling e downwelling ) e dos valores de LST, utilizando como referência dados de radiossondagens in situ , no sul do Brasil . Adicionalmente, foi executada uma análise de sensibilidade a dois esquemas de parametrização de camada limite planetária . Os resultados indicam que o modelo WRF simula de maneira satisfatória os perfis atmosféricos que, por consequência, geram parâmetros de correção e LST com baixos erros. Contudo, não existe melhora significativa nas métricas estatísticas entre os perfis extraídos diretamente da reanálise CFSv2 e os simulados pelo WRF . Em alguns casos, a utilização de um perfil de grade mais refinada resultou, até mesmo, em maiores erros. Os valores gerais de RMSE para a LST foram: 0,55 K ( CFSv2), 0,79 K ( WRF G12 ) e 0,82 K ( WRF G03 ). A escolha do esquema de camada limite mostrou - se caso - dependente. Conclui - se que não há necessidade especial de refinar a resolução dos perfis de reanálise visando estimativa de LST, por meio do método da RTE .The Land Surface Temperature (LST) retrieval from thermal infrared (TIR) remote sensing depends on performing an appropriate atmospheric correction. In general, this approach requires atmospheric profiles as input data. Global reanalysis data are a practical alternative to obtain these profiles, but they may have limitations. In this con text, this study aimed to assess the use of the Weather Research and Forecasting (WRF) numerical model to generate high - resolution vertical profiles, downscaling reanalysis data , to be applied in TIR atmospheric correction for LST retrieval . WRF simulations were carried out using NCEP Climate Forecast System Version 2 (CFSv2) reanalysis as initial conditions and two nested grids with horizontal resolutions of 12 km (G12) and 3 km (G03) . To retrieve the LST, we used: the Radiative Transfer Equation (RTE) based method , the MODTRAN model, and radiance values from Landsat 8 TIRS10 band . Th is research evaluated the model performance through vertical profiles, atmospheric correction parameters (atmospheric transmittance and upwelling and downwelling radiances) , and LST values, using in situ radiosonde data ( in Southern Brazil ) as reference. Moreover, a sensitivity analysis to two planetary boundary layer parameterization schemes was performed . The results indicate that the WRF model satisfactor il y simulates the atmospheric profiles that, consequently, generate correction param eters and LST with low errors. However, there is no significant improvement in statistical metrics between profiles extracted directly from the CFSv2 reanalysis and those simulated by WRF . In some cases, the use of a finer grid profile resulted even in larger errors. The LST overall RMSE values were: 0.55 K (CFSv2), 0.79 K (WRF G12) , and 0.82 K (WRF G03) . The boundary layer scheme choice proved to be case - dependent. We concluded that there is no special need to increase the resolution of reanalysis profiles in order to retrieve LST using the RTE - based method
    corecore