567 research outputs found

    Energy-Efficient NOMA Enabled Heterogeneous Cloud Radio Access Networks

    Get PDF
    Heterogeneous cloud radio access networks (H-CRANs) are envisioned to be promising in the fifth generation (5G) wireless networks. H-CRANs enable users to enjoy diverse services with high energy efficiency, high spectral efficiency, and low-cost operation, which are achieved by using cloud computing and virtualization techniques. However, H-CRANs face many technical challenges due to massive user connectivity, increasingly severe spectrum scarcity and energy-constrained devices. These challenges may significantly decrease the quality of service of users if not properly tackled. Non-orthogonal multiple access (NOMA) schemes exploit non-orthogonal resources to provide services for multiple users and are receiving increasing attention for their potential of improving spectral and energy efficiency in 5G networks. In this article a framework for energy-efficient NOMA H-CRANs is presented. The enabling technologies for NOMA H-CRANs are surveyed. Challenges to implement these technologies and open issues are discussed. This article also presents the performance evaluation on energy efficiency of H-CRANs with NOMA.Comment: This work has been accepted by IEEE Network. Pages 18, Figure

    Fundamental Limits of Cooperation

    Full text link
    Cooperation is viewed as a key ingredient for interference management in wireless systems. This paper shows that cooperation has fundamental limitations. The main result is that even full cooperation between transmitters cannot in general change an interference-limited network to a noise-limited network. The key idea is that there exists a spectral efficiency upper bound that is independent of the transmit power. First, a spectral efficiency upper bound is established for systems that rely on pilot-assisted channel estimation; in this framework, cooperation is shown to be possible only within clusters of limited size, which are subject to out-of-cluster interference whose power scales with that of the in-cluster signals. Second, an upper bound is also shown to exist when cooperation is through noncoherent communication; thus, the spectral efficiency limitation is not a by-product of the reliance on pilot-assisted channel estimation. Consequently, existing literature that routinely assumes the high-power spectral efficiency scales with the log of the transmit power provides only a partial characterization. The complete characterization proposed in this paper subdivides the high-power regime into a degrees-of-freedom regime, where the scaling with the log of the transmit power holds approximately, and a saturation regime, where the spectral efficiency hits a ceiling that is independent of the power. Using a cellular system as an example, it is demonstrated that the spectral efficiency saturates at power levels of operational relevance.Comment: 27 page

    Frequency planning for clustered jointly processed cellular multiple access channel

    Get PDF
    Owing to limited resources, it is hard to guarantee minimum service levels to all users in conventional cellular systems. Although global cooperation of access points (APs) is considered promising, practical means of enhancing efficiency of cellular systems is by considering distributed or clustered jointly processed APs. The authors present a novel `quality of service (QoS) balancing scheme' to maximise sum rate as well as achieve cell-based fairness for clustered jointly processed cellular multiple access channel (referred to as CC-CMAC). Closed-form cell level QoS balancing function is derived. Maximisation of this function is proved as an NP hard problem. Hence, using power-frequency granularity, a modified genetic algorithm (GA) is proposed. For inter site distance (ISD) <; 500 m, results show that with no fairness considered, the upper bound of the capacity region is achievable. Applying hard fairness restraints on users transmitting in moderately dense AP system, 20% reduction in sum rate contribution increases fairness by upto 10%. The flexible QoS can be applied on a GA-based centralised dynamic frequency planner architecture

    Cooperative Resource Management and Interference Mitigation for Dense Networks

    Get PDF

    Energy sustainable paradigms and methods for future mobile networks: A survey

    Full text link
    In this survey, we discuss the role of energy in the design of future mobile networks and, in particular, we advocate and elaborate on the use of energy harvesting (EH) hardware as a means to decrease the environmental footprint of 5G technology. To take full advantage of the harvested (renewable) energy, while still meeting the quality of service required by dense 5G deployments, suitable management techniques are here reviewed, highlighting the open issues that are still to be solved to provide eco-friendly and cost-effective mobile architectures. Several solutions have recently been proposed to tackle capacity, coverage and efficiency problems, including: C-RAN, Software Defined Networking (SDN) and fog computing, among others. However, these are not explicitly tailored to increase the energy efficiency of networks featuring renewable energy sources, and have the following limitations: (i) their energy savings are in many cases still insufficient and (ii) they do not consider network elements possessing energy harvesting capabilities. In this paper, we systematically review existing energy sustainable paradigms and methods to address points (i) and (ii), discussing how these can be exploited to obtain highly efficient, energy self-sufficient and high capacity networks. Several open issues have emerged from our review, ranging from the need for accurate energy, transmission and consumption models, to the lack of accurate data traffic profiles, to the use of power transfer, energy cooperation and energy trading techniques. These challenges are here discussed along with some research directions to follow for achieving sustainable 5G systems.Comment: Accepted by Elsevier Computer Communications, 21 pages, 9 figure

    Frequency planning for clustered jointly processed cellular multiple access channel

    Get PDF
    Owing to limited resources, it is hard to guarantee minimum service levels to all users in conventional cellular systems. Although global cooperation of access points (APs) is considered promising, practical means of enhancing efficiency of cellular systems is by considering distributed or clustered jointly processed APs. The authors present a novel `quality of service (QoS) balancing scheme' to maximise sum rate as well as achieve cell-based fairness for clustered jointly processed cellular multiple access channel (referred to as CC-CMAC). Closed-form cell level QoS balancing function is derived. Maximisation of this function is proved as an NP hard problem. Hence, using power-frequency granularity, a modified genetic algorithm (GA) is proposed. For inter site distance (ISD) <; 500 m, results show that with no fairness considered, the upper bound of the capacity region is achievable. Applying hard fairness restraints on users transmitting in moderately dense AP system, 20% reduction in sum rate contribution increases fairness by upto 10%. The flexible QoS can be applied on a GA-based centralised dynamic frequency planner architecture
    corecore