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Abstract

Due to limited resources, it is hard to guarantee minimum service levels
to all users in conventional cellular systems. Although global cooperation of
Access Points (APs) is considered promising, practical means of enhancing
efficiency of cellular systems is by considering distributed or clustered jointly
processed APs. Authors present a novel ’QoS balancing scheme’ to maximize
sum rate as well as achieve cell based fairness for clustered jointly processed
cellular Multiple Access Channel (CC-CMAC). Closed form cell level quality
of service (QoS) balancing function is derived. Maximization of this function
is proved as an NP Hard problem. Hence,using power-frequency granularity, a
modified genetic algorithm (GA) is proposed. For ISD < 500m, results show
that with no fairness considered, the upper bound of the capacity region is
achievable. Applying hard fairness restraints on users transmitting in mod-
erately dense AP system, 20% reduction in sum rate contribution increases
fairness by upto 10%. The flexible QoS can be applied onto a GA based
centralized dynamic frequency planner architecture.

1 Introduction

Global AP cooperation which has been studied in classical Wyner model [1], ex-
tended with fading [2] and distance dependent pathloss [3], is considered too com-
plex to implement. Recently, localized joint processing of APs has been proposed
in the framework of isolated groups [4], local message passing [5, 6], and limited
backhaul [7]. In [8], the concept of rate splitting from Interference Channel were
applied to clustered jointly processed APs. In such schemes, Inter Cluster Inter-
ference from users outside cluster is the only dominant type of interference. Since
edge cells are more prone to interference from neighbouring cells, the level of inter-
ference at the edge and centre of a cluster is not the same [9]. Hence techniques
involving strongest channel coefficients like dynamic clustering [10] are proposed to
address the varying degree of interference levels. In this work however we consider
geographically fixed clusters.
Similar to conventional cellular networks, frequency planning can be considered an
effective method to control the interference situation. Here we refer to such sys-
tems as cluster cooperative cellular multiple access channels or (CC-CMAC) [11].
We consider the frequency planning for CC-CMAC in order to maximize network
utility using a derived formulation of per cell sum rate. We consider balancing of

per cell sum rate within cell users in a 7 cell cluster surrounded by 6 first tier in-
terfering clusters and so on. In this context per cell sum rate balancing takes place
at the cluster head. Cumulatively, the network wide balancing of per cell sum rate
for users transmitting in a CC-CMAC is referred to as QoS balancing function.
This balancing approach is useful in quantifying cell utility for a range of per cell
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sum rate conditions. Two cases of interest are : (a) maximizing sum rate, and (b)
achieving cell based fairness.
We take a cell based approach as in [12] and assume a medium-term time scale cor-
responding to cell-level load variations. The short term variations related to user
mobility and instantaneous channel conditions are assumed to be handled by each
cluster’s radio resource management functionality.

.
The rest of the paper is organized as follows. Section 2 introduces the concept of

CC-CMAC and bin allocation over AP based fixed clusters and presents the system
model. The system architecture is presented in Section sec:problemformulation. In
Section 4, the closed form representation of cell based QoS balancing function for
CC-CMAC is derived. In Section 5, the solution to this formulation is proved to
be NP Hard. Section 6 discusses the solution framework using a modified heuristic
i.e. genetic algorithm(GA). The effect of power-frequency granularity, rate and
fairness are discussed in Section 7. The application of CC-CMAC in a practical GA
based architecture, optimizing QoS balancing function, with architecture complexity
analysisis presented in Section 7.2. We conclude in Section 8.

Notation

Lower and upper case boldface symbols denote vectors and matrices, respectively;
Math Curl represents the set notation, (.)† denotes the Hermitian transpose, |.|
represents the cardinality of a set, diag is the diagonal of the matrix, tr represents
the matrix trace and E[.] represents the expectation operator.

2 System Model

The uplink capacity of CC-CMAC is analyzed using bin allocation. Bins are disjoint
equal width frequency bands with flat transmit power spectral density used over
them [12]. Specifically, a hexagonal grid of N cells is assumed which is divided into
Q fixed, equal and identical clusters. Nq is the set of all cells belonging to cluster q,
where q = 1, . . . , Q, & |Nq| =

N
Q . Similarly, Nq is the set of all cells not belonging

to cluster, q where |Nq| = N − N
Q . Noise is AWGN. For transmission over a given

bin b, the |Nq| × 1 received signal vector yq for the qth cluster can be modelled as:

yq = Hqxq + ẑq (1)

ẑq = Ĥqx̂q + zq (2)

where the |Nq| × K|Nq| channel matrix, H
q = [Hq

1
, . . . ,H

q

|Nq |
], contains complex

gain matrices for K users per cell, within the |Nq| cells which are located within
qth cluster and |Nq| × K(N − |Nq|) channel matrix, Ĥq = [Ĥq

1
, . . . , Ĥ

q

N−|Nq |
], con-

tains complex gain matrices for all N − |Nq| cells out of the qth cluster. Similarly,
x
q = [xq

1
, . . . ,x

q

|Nq |
]T is a K|Nq| × 1 transmit symbol vector for all cells within qth

cluster and x̂q = [x̂q
1, . . . , x̂

q
N−|Nq |

]T is a K(N − |Nq|) × 1 transmit symbol vector

for all cells outside cluster q. zq represents the |Nq|× 1 independent complex circu-
larly symmetric AWGN vector at receiver. The transmitters are subject to power

constraint tr(E[xq
i (x

q
i )

†
]) ≤ KPi & tr(E[x̂q

j (x̂
q
j)

†
]) ≤ KPj , where cell i and cell j

are located within and outside cluster, q respectively. We assume that the users
have same per user power constraint. Hence Pi = Pj = Pn, ∀n = 1, . . . , N . This
has applications in energy constrained transmitter, where power is restricted over
the entire spectrum.
A simple scenario for 2 cells transmitting to APs in 2 different clusters is explained
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in Figure 1. We consider allocating sets of frequency bins to each cell in a cluster
as per the bin allocation shown in the bottom of Figure 1.

Let an,b be the n
th row and bth column entry for the allocation matrix, A. Allo-

cation matrix A represents allocation of bth bin to users in nth cell (Non zero integer
implies allocation; 0 implies otherwise). If allocation matrix for users transmitting
in Cell 1 in Figure 1 is produced it will have values of P (1, 1) at a1,1 and so on.
The maximum bins (discrete frequency allocation intervals) that are implemented
are B bins. For V quantization bits per bin, A ∈ {1, . . . , 2V − 1}N×B represents
joint bin and power allocation to the N cells in the system. Here Nb(A) represents
the set of cells which have been allocated the bth bin.

3 System Architecture

As shown in Figure 2, GA based network QoS balancing function (discussed in Sec-
tion 3.1) is implemented in a centralized architecture. The cell path loss information

is in the form of ςq1 for the transmission from cell indexed by 1 and whose signal is
received at the AP in the qth cell. This information can be represented with min-
imum algorithmic complexity with the help of closed form framework of bin based
allocation in CC-CMAC. This is explored in Section 4. The filtering function is rep-
resented by g(·) which takes Â and ς

q
n as inputs. It assigns the updated frequency

allocation algorithm Â to the network. Further, the updated ς
q
n is sent to Central

Frequency Planner (CFP). Here for the first run, Â consists of randomly generated
bin allocation matrix, A. Subsequently, the GA entity assigns the fittest solution
to Â. These entries are the result of partial bin reuse (PBR) solution framework

which are discussed in Section 6. In this context, ςqn is collected every hour so as to
represent the changing dynamics of user profiles. This has applications in Colling-
wood Circle design, and random non homogeneous user traffic profile as detailed in
[11].

3.1 Network wide QoS balancing Framework

Mobile network operators would like to ascertain network wide efficiency criterion to
meet objectives of profit maximization. Hence the need for a system wide efficiency
criterion.In this section we determine this efficiency in terms of QoS balancing of
per cell sum rate. For a given fairness coefficient γ, Uγ(A) is the system level
QoS balance metric which is broken down to cell based QoS balance metric in (3).
Mathematically,

Uγ(A) =
1

N

Q
∑

q=1

∑

n∈Nq

uγ(Rn,q(A)) (3)

∀ b = 1, . . . , B; ∀ n = 1, . . . , N

Here uγ(Rn,q(A)) is the QoS balancing metric for users in nth cell within the qth

cluster. Here for a given A, Rn,q(A) is the sum rate due to transmission from the
nth cell within the qth cluster. Our objective is to,

max Uγ(A) (4)

s.t. Rn,q(A) ∈ R
+
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subject to the power constraints as embodied in A. Combining (3) and (4), the
optimization problem is to maximize network wide QoS balancing function. Hence,

max
A

System wide cell based QoS balancing
︷ ︸︸ ︷

1

N

Q
∑

q=1








Cell based QoS balancing qth cluster
︷ ︸︸ ︷
∑

n∈Nq

[

uγ(Rn,q(A))

]








(5)

s.t. Rn,q(A) ∈ R
+ (6)

B∑

b=1

Pn,b ≤ P

∀ n = 1, . . . , N ; ∀ b = 1, . . . , B.

where P is the maximum per user transmit power over all the allocated bins. The
value of Pn,b varies across bins and across different cell users within a cluster.
This is because QoS balancing needs to account for two forms of interference i.e.
inter cluster and intra cluster interferences. This has implications for considering
such a formulation for macro cells in conjunction with pico cells and femto cells.
However, since our fomulation considers fixed cluster and is not a hierarchical based
clustering, further topics likes HetNet can be modelled but not explored in detail
for in this paper. The bin based CC-CMAC formulation has been discussed in [13]
and performance detailed in [11]. In this paper, the authors build on the material
from their previous work.

4 Cell based QoS Balancing Function

Uγ depends on uγ , which is a function of cell based sum rate, Rn,q(A). We first
derive a closed form representation of per cluster sum rate from the iterative sim-
ulation based formula. The closed form expression has the advantage of reduced
complexity and signalling cost as compared to the averaged simulation based sum
rate expression. The jointly processed sum rate for qth cluster is then decoded to
analyze the sum rate contribution by users in every cell located within qth cluster.
This is implemented using MMSE SIC framework [14].

4.1 Simulation based sum rate for CC-CMAC

The concept of joint processing of signals to evaluate sum rate was introduced in
Wyner’s Gaussian Cellular Multiple Access Channel (GCMAC) model [1]. Letzepis
extended classical work of Wyner, to produce a log det formulation for capacity of
jointly processed cellular networks with free space path loss. The sum rate repre-
sentation for qth geographical fixed cluster of APs as in [13] was denoted using the

expectation of per cell sum rate formulation : Rq = log det(
Sq

Snq
) The useful signal

is represented in numerator (Sq) and interference as well as noise in demoninator
(Snq). Extending the log det formulation, in this section this formulation is ex-
plained and extended to represent a closed form representation of per cell sum rate
to accomodate into our proposed architecture (Figure 2).

As per simulation results of E[Rq(A)] versus Pn(A); ∀n, Rq(A) is a concave
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function [11]. Hence, applying the Jensen’s inequality [15] gives the following:

E[Rq(A)] ≤
1

B

B∑

b=1

log












E












det



σ2
zIN

Q
+

∑

n∈Nb(A)

Pn(A)Hq
n(H

q
n)

†





det



σ2
zIN

Q
+

∑

n∈Nb(A)∩Nq

Pn(A)Hq
n(H

q
n)

†



























(7)

In (7), assume that K → ∞. As per law of large numbers, E
[
X
Y

]
= E[X]

E[Y ] ,

since largeK implies a deterministicX and Y . Further, using log(AB−1) = log(A)−
log(B) the following can be deduced:

E[Rq(A)] ≤
1

B

B∑

b=1

[

log

{

E

[

det
(
σ2
zIN

Q
+

∑

n∈Nb(A)

Pn(A)Hq
n(H

q
n)

†)
]}

(8)

− log

{

E

[

det
(
σ2
zIN

Q
+

∑

n∈Nb(A)∩Nq

Pn(A)Hq
n(H

q
n)

†)
]}]

Consider a fast fading scenario where each fading coefficient is represented
by g

nq

n,k and pathloss identified by s
nq

n,k, for transmission from kth user in nth cell
to AP in cell nq located within cluster q. The channel coefficient is represented by
h
nq

n,k = g
nq

n,k ⊙ s
nq

n,k where ⊙ represents the Hadamard product. The transmission is
modelled as a time-varying ergodic process.

Assuming a large number of users per cell i.e. K → ∞, as per law of large
numbers, 1/K

∑K
k=1 |g

nq

n,k|
2 → 1 for ∀n, ∀q. Using complex matrices for fading,

product of complex fading coefficients with its complex conjugate is equal to power
which is normalized to unity. Hence,

E[g
nq

n,kg
nq

n,k

†
] = E[(g

nq

n,k)
2] = 1 (9)

Moreover, the expectation of product of a complex fading coefficient with the com-
plex conjugate of a different fading coefficient but following the same PDF is the
square of the expected value of an individual fading coefficient. Hence,

E[g
nq

n,kg
nq

n′,k′

†
] = [µg]

2 (10)

here k′ 6= k and n′ 6= n. µg is the expected value of an individual fading
coefficient. In the case of the Rayleigh based flat fading, µg = 0 as in [2].

Further, define g
nq
n = [g

nq

n,1, g
nq

n,2, . . . , g
nq

n,K ] and s
nq
n = [s

nq

n,1, s
nq

n,2, . . . , s
nq

n,K ] as
1×K complex fading vector and 1×K deterministic pathloss vector for transmission
from users in nth cell and received at the AP in the nth

q cell within the qth cluster.
Considering only the diagonal entries of the estimation for covariance of Hq

n, the
following can be deduced:

diag(E[Hq
nH

q
n
†]) = E[(s1n ⊙ g1

n)(s
1
n ⊙ g1

n)
†, . . . , (s|Nq|

n ⊙ g|Nq|
n )(s|Nq|

n ⊙ g|Nq|
n )†](11)

= E[(s1ns
1
n
†
)⊙ (g1

ng
1
n
†
), . . . , (s|Nq|

n s|Nq|
n

†
)⊙ (g|Nq |

n g|Nq|
n

†
)] (12)

=
[

E[s1ns
1†
n ], . . . ,E[s|Nq|

n s|Nq|†
n ]

]

(13)

= [ς1n, . . . , ς
|Nq|
n ] (14)
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Here diag(.) is the diagonal entry of the matrix in the argument. (13) is derived

from (12) after combining with (9). Further, ςqn = [ς1n, . . . , ς
|Nq|
n ] is the 1 × |Nq|

deterministic vector representing average pathloss coefficient, ς
nq
n experienced by

users in nth cell transmitting to all APs in qth cluster. Hence, ς
nq
n ,

1

K

K∑

k=1

(s
nq

n,k)
2

∀nq = 1, . . . , |Nq|. Extending the above to the formulation for power and bin allo-
cation, the following can be deduced for asymptotically large number of users:

diag(E[Pn(A)Hq
n(H

q
n)

†]) = Pn(A)ςqn (15)

Recalling (8) and decomposing the RHS log argument, it is known that

W1 = E



det



σ2
zIN

Q
+

∑

n∈Nb(A)

Pn(A)Hq
n(H

q
n)

†







 (16)

W2 = E



det



σ2
zIN

Q
+

∑

n∈Nb(A)∩Nq

Pn(A)Hq
n(H

q
n)

†







 (17)

Plugging (15) in (17),

W1 = det











σ2
z +

∑

n∈Nb(A)

Pn(A)ς1n 0 0

...
. . .

...

0 0 σ2
z +

∑

n∈Nb(A)

Pn(A)ς
|Nq |
n











(18)

Applying similar concept to argument of second log on RHS of (8), and summing
up for all Q clusters, the closed form sum rate formulation for CC-CMAC, is as
follows:

R̄(A) ≤

Q
∑

q=1

{

1

B

B∑

b=1

[

log




∏

nq∈Nq



σ2
z +

∑

n∈Nb(A)

Pn(A)ς
nq
n









− log




∏

nq∈Nq



σ2
z +

∑

n∈Nb(A)∩Nq

Pn(A)ς
nq
n









]} (19)

This concludes the derivation.

4.2 Time Complexity Analysis: Simulation vs Closed form

Algorithmic efficiency is computed using complexity analysis. Using the analytical
derivation, the closed form representation of E[Rq(A)] over all q is given by (19).
Average of per cell sum rate is evaluated using 1000 Monte Carlo based iterations.
These represent random fading and user distribution snaps. A for loop is conven-
tionally used to average over these states. Figure 3 shows that simulation based
analysis has complexity to the order of n2. This explains the increasing gradient
with increasing cells per cluster, |Nq| for simulated sum rate in Figure 3. For the
closed form representation, these loops are no longer needed as the fading states are
approximated using the law of large numbers. Further, Figure 3 shows that the order
of complexity increases logarithmically in the order non-cooperative (NC-CMAC),
cluster-cooperative (CC-CMAC) and full-cooperative (FC-CMAC) cellular MAC.
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R̄π(o),q(A) = ˜̄Rπ(o),q(A)−
o−1∑

i=1

R̄π(i),q(A)

where,

˜̄Rπ(o),q(A) =

[

log

(
∏

m∈Nq

[

σ2
z +

∑

n∈Nb(A)

Pn,b(A)ςmn

])

− log

(
∏

m∈Nq

[

σ2
z +

∑

n∈N+
π(o),b

o∈Nq

Pn,b(A)ςmn

])] (20)

This can be explained due to the reduced search space from FC-CMAC(2BN) to
CC-CMAC(2B|Nq|). This gives another motivation for choosing CC-CMAC which
can be implemented for a range of practically realizable receivers in an AP cooper-
ation based cellular system framework.

Figure 6 shows that the average Monte Carlo based simulation matches closely
to the closed form representation for the 3 different Cellular MAC models. This
justifies use of closed form representation in subsequent analysis.

4.3 Derivation of closed form cell based QoS balancing func-
tion

We further perform SIC [14] on the cells within each cluster such that the sum rate
of users within a cluster can be evaluated. In order to decode the cell based ordering
from the cluster based sum rate, we need to first consider closed form of system
wide sum rate of all cells represented by R̄(A) (19) from [12].

We consider MMSE-SIC detection[14] on the received signal at qth cluster (i.e.
Rq(A)) with decoding ordered as follows: 1, 2, 3, . . . , N

Q . For a given bin allocation,
b, we first detect the signal from cell 1 treating the signals from all the other
cells within the cluster as interference, and then subtract the contribution of this
interference from this signal. The detection process is then repeated for cell with
index 2 up till index N

Q . Here it is assumed that |NQ | = 7. Defining π(n) as the

permutation of cells in set Nq with π(1) being the first decoded cell and π(7) as the
last decoded cell. Generalizing for cell decoding order π we have per cell sum rate
for oth cell transmitting over bth bin in qth cluster defined as in (20).

Formulating (20), R̄π(o),q(A) defines the signal from all cluster users transmit-

ting over bin, b. ˜̄Rπ(o),q(A) defines the interference from users transmitting in
cluster different from the reference cluster as well as signals from users in cells
within the same cluster but not decoded. We further decode the per cell sum
rate for qth cluster by deriving (21) from (20), where σ2

z is defined previously and
N+

π(o),b = Nb(A) ∩ Nq ∪ N+
π(o). Here the non-decoded cells within the cluster, are

represented by the set, N+
π(o) = {π(o+ 1), . . . , π(NQ )}.

Lemma 1. For CC-CMAC using MMSE-SIC, the sum rate for oth cell in the qth

cluster,has an ergodic sum rate given by:

R̄π(o),q(A) =







f(Nb(A)))− f(N+
π(1),b) if o = π(1)

f(N+
π(o−1),b)− f(N+

π(o),b) otherwise

∀o ∈ Nq

(21)

where, for simplicity it is assumed that f(Nb(A)) = log

(
∏

m∈Nq

[

σ2
z+

∑

n∈Nb

Pn,b(A)ςmn

])

&
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f(N+
π(o),b) = log

(
∏

m∈Nq

[

σ2
z +

∑

n∈N+
π(o),b

o∈Nq

Pn,b(A)ςmn

])

and that
1

B

B∑

b=1

(.) can be ig-

nored from RHS of (21) for simplicity.

Proof. Here we attempt to derive (21) from (20). For o = 1, and from (20), it is
easy to show the sum rate for first decoded cell as :

R̄π(1),q(A) = ˜̄Rπ(1),q(A) = f(Nb(A))− f(N+
π(1),b)

Similarly, for o = 2,

R̄π(2),q(A) = ˜̄Rπ(2),q(A)− R̄π(1),q(A)
= f(Nb(A))

::::::::

− f(N+
π(2),b)− [f(Nb(A))

::::::::

− f(N+
π(1),b)]

= log

(
∏

m∈Nq

[

σ2
z +

∑

n∈N+
π(1),b

o∈Nq

Pn,b(A)ςmn

])

− log

(
∏

m∈Nq

[

σ2
z +

∑

n∈N+
π(2),b

o∈Nq

Pn,b(A)ςmn

])

(22)

...
...

Similarly for o = N
Q ,

Rπ(N
Q
),q(A) = ˜̄Rπ([N

Q
]),q(A)− R̄π([N

Q
]−1),q(A))

= log

(
∏

m∈Nq

[

σ2
z +

∑

n∈N+

π([N
Q

]−1),b

o∈Nq

Pn,b(A)ςmn

])

− log

(
∏

m∈Nq

[

σ2
z +

∑

n∈N+

π([N
Q

]),b

o∈Nq

Pn,b(A)ςmn

]

Generalizing the above results by replacing cell indices with global variable o, one
can get second part of (21). This sums up the proof.

5 NP Hardness for Bin Allocation Problem (BAP)
in CC-CMAC

TThe aim of the BAP in fixed CC-CMAC is to assign bin resources to multiple cells
such as to maximize QoS balancing function. In this section,it is assumed that QoS
balancing function maximizes sum rate of all users. The sum rate maximization
problem is a subset of the general QoS balancing function (which is a function of
cell based sum rate).The well studied MI-FAP is mapped from literature [16] to the
BAP Problem as per following definition.

Definition 1 (BAP using Multiple Bin for CC-CMAC). The achievable sum rate
due to transmissions from users in the Q clusters using B bins, and received by the
APs in the Q clusters is defined as in (19).

Theorem 1. Solution to the BAP using Multiple Bin for CC-CMAC with Q >> 2
is NP Hard.
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Proof. This section will highlight important steps which are detailed in [11]. Con-
sider the clustering problem as the communication theoretic analogy of graph par-
titioning problem. This is defined as the division of total vertices, V into disjoint
sets represented by Vq such that the number of edges whose end points are in Q− 1
different vertices subsets are minimized.

Vertices of graph play role of transmitters in CC-CMAC and edges model point
to point link between nodes. Define a cut across sets within and without cluster q
and define the conductance of cut as a measure of cluster quality. This is considered
analogous to system efficiency of CC-CMAC.

Uq is the set of transmitters in qth cluster. Since users are colocated with re-
ceivers, |Uq| = |Vq|. These terms are used interchangeably denoting transmission
and reception nodes in graph theoretic framework. Sum rate contribution due to
transmission from users within qth cluster is denoted by, Ra which is as follows,

Ra = log




∏

v∈Vq



σ2
z +

∑

u∈Uq

Puςvu







 (23)

where, σ2
z is the noise variance and Pu is the maximum transmit power for users

in u. Similarly, sum rate contribution due to transmission from users outside qth

cluster is denoted by, Rb. Hence,

Rb = log




∏

v∈Vq



σ2
z +

∑

u/∈Uq

Puςvu







 (24)

Both Ra and Rb can be regarded as specific instances of R̄(A) (19). These can be
evaluated from (19) using MMSE-SIC techniques [14].

5.1 Active receivers in single cluster (|Vq| = |Nq|)

Consider W as the set of all edges. |W| increases linearly with |Û |. Further denote
W intra

q & as the set of graph edges with both endpoints lie within qth cluster.

Similarly.W inter
q is the set of edges with one endpoint in and one out of qth cluster.

Further, Wq = W intra
q ∪ W inter

q . Hence the following mapping function can be
formulated,

Ra(Û) 7−→ |W intra
q | (25)

Rb(Û) 7−→ |W inter
q |

where 7−→ refers to the mapping between number of interfering edges to the sum
rate contribution due to transmission from users within Ra(Û) and outside Rb(Û)
the cluster.

5.2 Active receivers in multiple clusters (|Vq| > |Nq|)

Assuming identical clusters, and using min(|W intra
q |, |Wq|) = |Wq|.

Also as in [17], take subset S of V and define a cut (S,V/S). Here, for BAP
in CC-CMAC, the cut is represented by (Nq,Nq) where Nq ⊆ N and N is the set
of all cells within the system. Applying concept of graph clustering from [17], the
following can be deduced:

φ(Nq) =
|W inter

q |

min(|W intra
q |, |Wq|)

(26)

=
|W inter

q |

|Wq|
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From [17], it is known that conductance of graph cluster, q i.e. φ(Nq) will
be smallest conductance within that cluster. Further the conductance of graph
is minimum conductance over all possible clusters,q. Applying to CC-CMAC this
would imply a spectral efficiency measure over all clusters Q. Hence,

φ(G) = min
Nq⊆N ;∀q

φ(Nq) (27)

= max
Nq⊆N ;∀q

( 1

φ(Nq)

)
(28)

= max
∀q

(Ra +Rb

Rb

)

= max
∀q∈{1,2}












log




∏

v1∈Vq

[

σ2
z +

∑

n∈N

Pnς
v1
n

]



log




∏

v1∈Vq



σ2
z +

∑

n∈N∩Nq

Pnς
v1
n




















(29)

(28) follows from (27). In terms of rate contribution as a measure of conductance,
(28) can be expanded to represent (29).

5.3 Multiple bin allocation for reception at receivers within
multiple clusters

In a multiple cluster multiple bin BAP, (29) can be extended from single bin to
multiple bins formation i.e. from B = 1 to B >> 1 and average over a bin. The
number of receivers |Vq| increases for Q >> 2. This suits the requirement of 7
clusters and 7 cells per cluster formation as implemented for Definition 1. Being a
subset of BAP general problem, if (27) is proved NP Hard, then the generalized
BAP for CC-CMAC is also NP Hard. From [17] and [16], solving (27) is proved
to be NP Hard. Here, (29) is equivalent to (27).Hence (29) is also proven as NP
Hard.

Since BAP for Multiple Bin allocation in CC-CMAC is a more general case
of (29), Definition 1 is also NP Hard. QoS balancing function is a function of
sum rate i.e. depends on (19) and therefore Definition 1. Optimizing the network
QoS balancing function problem as defined in Section 4 is therefore an NP Hard
problem.

6 GA based implementation of QoS Balancing func-
tion in CC-CMAC

GA is a powerful optimization tool widely used in solving channel allocation prob-
lems including dynamic channel allocation [18, 19] and bin allocation in Cellular
MAC[12].

To optimize efficiency of allocation for CC-CMAC users, (5) is used as an ob-
jective function to a modified GA. The allocation is optimized over a number of
generations. In each generation, the allocation matrix encoded onto a number of
chromosome strings is evaluated. The crossover technique is selected such that the
crossover point separates allocation for different users. Mutation is implemented by
flipping the alleles [20] to any of the 2V −1 alternate power states. The termination
criteria is determined by the number of generations over which the efficiency is near
constant. These are summarized in Figure 4 and detailed as in [11].
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6.1 GA Implementation

The modification of GA with respect to generic string encoding, using fitness func-
tion, crossover technique and mutation as depicted in Figure ref takes place as
follows:

6.1.1 Encoding of Bin Allocation Matrix

The method of representation (encoding) for a chromosome has a major impact
on GA’s performance. Binary string encoding is selected since it helps to select
from a large number of possibilities using few trials. Compared to a binary string
of 5 a binary string of 10 has 32 times larger schemata. The string length (B ×
N) represents total number of genes. Each gene represents allocation of a specific bin
to a specific cell for CC-CMAC. Further, binary strings were chosen for simplicity
of operation [20]. Similarly in this work a 0 signifies no allocation whereas a non
zero allele indicates an allocation.

6.1.2 Block sized Crossover

This type of crossover puts restriction on the location of the plane of crossover. This
is required since the allocation on either side of the plane should belong to different
cells. GA would otherwise descend to premature convergence [11]. This scheme
is depicted in Figure 5. Here Parent 1 and Parent 2 pass their characteristics to
Child 1 and Child 2. This is shown by a direct mapping from Parent 1 to Child 1
and Parent 2 to Child 2. Beyond the plane of crossover, genes are swapped for the
remaining chromosome such that Child 1 receives Parent 2’s genes and vice versa.
The above is verified after creating test points in the Matlab simulation. Secondly,
content of the chromosome is verified before and after the crossover operation.
Moreover, the bins allocated to each user are summed up. This should be the same
before and after the crossover operation.

6.1.3 Elitism

Fitness function is a non negative figure of merit [21] used to quantify the ‘best
fit’ amongst the population. Survival of the fittest translates to discarding the
chromosomes which are unfit. In the bin allocation problem, bins are allocated
such that they maximize sum rate. This is done by reshaping encoded matrix from
the chromosome string to a bin allocation table. This allocation matrix denotes the
input matrix for (19). After GA has reached maximum generations, the encoded
matrix is converted back to chromosome strings.
As can be observed, the fitness function (2) is a summation of user rates in all Q

clusters. In each cluster, the sum rate is of the form Rq(A) = 1
B

∑B
b=1 log det{

I
J
}.

Here B is constant over a given run and depends on allocation A dimensions. I

represents the received signal strength as observed by the receivers in qth cluster,
from all transmitters in the system (i.e. inside and outside the qth cluster) and J is
received signal strength of the transmissions from outside the cluster q. The set of
conditions under which J is minimized and I is maximized, hence determines the
‘best fit’ solution to the GA under study.

6.1.4 Selection

The concept of elitism was implemented with a modified version of De Jong’s elitist
model [22]; the best member of current population is forced to become member of
the next population. This helps maximize sum rate over all generations. The fitter
the parents, the higher the chances that they are selected.
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6.1.5 Crossover

Crossover is the main genetic operator which preserves inherit characteristics from
each parent using a “cut-catenate” technique. Single point crossover is the sim-
plest of all crossover techniques. [18]; hence it is adopted in this analysis. However,
Figure 5 shows that point of crossover cannot bisect bins allocated to a single user
(shaded group of 3 bins). If that is the case, it will result in the algorithm converging
prematurely.

The sort of single point crossover used depends on restriction on the location
of the plane of crossover. This is required since the allocation on either side of the
plane should belong to different cells. GA would otherwise descend to premature
convergence [11]. This scheme is depicted in Figure 5. Here Parent 1 and Parent 2
pass their characteristics to Child 1 and Child 2. This is shown by a direct mapping
from Parent 1 to Child 1 and Parent 2 to Child 2. Beyond the plane of crossover,
genes are swapped for the remaining chromosome such that Child 1 receives Parent
2’s genes and vice versa. The above is verified after creating test points in the
Matlab simulation. Secondly, content of the chromosome is verified before and after
the crossover operation. Moreover, the bins allocated to each user are summed up.
This should be the same before and after the crossover operation. Crossover takes
place with a set probability, Pc. If Pc = 0, then the new chromosome population
is a copy of the old. If Pc = 1.0 all the offspring are made by crossover. In our
analysis, Pc is in the range of 0.75 - 0.90.

6.1.6 Variable Mutation

Mutation is a genetic operator which transforms individual chromosomes by ran-
domly changing allele (inverting bit positions) of some genes. The operation is
carried out on the allocated bins and varied as per sum rate gradient in order to
respond the random nature of user positioning . Mutation takes place with a very
low bit probability, to prevent the GA from becoming a random search operation.
Probability of mutation on a bit, Pm is hence in the range 0.0001 - 0.01.

6.1.7 Termination Condition

The termination condition specifies whether the algorithm needs to continue search-
ing or stop. When no further bin allocation maximizes sum rate and the population
has converged, the GA terminates. In this implementation, similar fitness values
over consecutive generation indices satisfies termination condition. The GA will
terminate if the fitness value is consistent for the last 10 consecutive generations.

A total of 16 simulations were carried out. The total number of users K, trans-
mitting in each cell was modified such that:

• 4 sets of experiment were carried out using varying population size, M for
K > 100

• 4 sets of experiment with different crossovers(M−1 ≤ Pc ≤ M), K > 100

• 4 sets of experiment were carried out with varying M , K < 100

• 4 sets of experiment with different crossovers(M−1 ≤ Pc ≤ M), K < 100

The above parameters were optimized by tuning to gain stability within the
experiment (consistency in values over the last 10 generations), and the efficiency
achieved (difference in sum rates between first and last completed generation cycle).

To sum up, the bin allocation is optimized over a number of generations. In each
generation, the allocation matrix is encoded onto a number of chromosome strings
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and each string is evaluated against an objective criteria (optimization of resource
allocation). The crossover technique is selected such that the crossover point sepa-
rates allocation for different users. Mutation is implemented by flipping the alleles
[20] to any of the 2V − 1 alternate power states. Here V is the total number of bits
encoded for bin allocation to every user. The termination criteria is determined
by the number of generations over which the efficiency is near constant. These are
summarized in Figure 4 and detailed as in [11].

7 Results & Discussion

Figure 6 shows the effect of V and B on sum rate for CC-CMAC. For high density
APs, the efficiency of GA optimized allocation in CC-CMAC approaches the upper
bound. For less dense systems, the difference between GA optimized and full reuse
allocation schemes reduces to nearly 0. The given parameters make GA suitable for
dense urban centres.

7.1 Impact of fairness on QoS : max-min fairness

The max-min fairness is a tractable and flexible fairness model that helps to compare
a range of fairness conditions. It is known that rate region for (21) is not convex in
general. Since class of utilities depending on per cell sum rate should have a convex
formulation as their input, further conditions are required to optimize the fairness
formulation using cell based sum rate.

Using function h(x) of the form (ex−1)−1 satisfies the conditions for maximizing
minimum sum rate contribution of users in a cell such that any further increase will
likely to decrease sum rate allocated to higher rate cell users [11]. Lemma : If
h(x) is differentiable increasing negative & concave function than given x ≥ 0 , the
solution of Uγ(h(x)) approaches max−min fair vector for γ → 10.

From definition of log−concave, we know that a function is log−concave if log f
is concave. We know that cumulative Gaussian Proability Function is log−concave.
Applying the same to the fairness formulation introduced, it can be shown that [11]:

uγ(Rm,q(A)) =
−[h(Rm,q(A))]−γ

γ max−minF. (30)

Here, uγ(Rm,q(A)) is the service balancing function for users in mth cell in qth

cluster using fairness coefficient of γ. Simplifying, the following can be deduced

uγ(Rm,q(A)) = 1
γ

[

−1
(e(Rm,q(A))−1)

]γ

max−minF. (31)

Based on the above, it is imperative to compare fairness with the system ef-
ficiency. Having a fair distribution of resources will reduce the numerator for R.
However, the sum rate contribution of edge cells will increase since they now have
more resources allocated to them. Since the number of edge cells (6) is far greater
than the non edge cells(1), there is an increase in interference to receivers in adjacent
clusters. This reduces the over all sum rate further. However, the CDF determines
in 2 stages the effect of fairness and improvement of group performance (cell users)
within a cluster.

• The 10th percentile is used to gauge performance of users in cell edge.

• The 90th percentile is used to gauge performance of users in cell centre.
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Since the fairness described is strict and effects the edge cell users most, 10th
percentile is generally regarded as the determining metric for qualifying edge cell
users since their sum rate contribution is the least [11].

For D = 1000m, sum rate contribution due to hard fairness optimized QoS
balancing function is shown in Figure 6 and the plot in Figure 8. For nominally
dense APs, the sum rate is reduced by about 20%. However, the minimum rate of
disadvantaged users is increased by 10%. At the 10th-percentile reference, sum rate
for MMF optimized allocation is 5.1 as compared to 4.7 for maximize sum rate.
Hence 10% users have rates which are atleast 0.5 bps/Hz/cell higher than that due
to QoS balancing function without fairness. This gap is further increased if the
cross over points are varied along with the poulation size. That is the cross over
points are not predetermined.

In lower percentile CDFs, lower sum rate contributors are less prone to inter-
ference from other low sum rate contributing cells in alternate clusters. This is not
the same for higher cell sum rate contributors which are more prone to interference.
Using variable crossover points, the resource allocation becomes more flexible and
scant resrouces are allocated to the very few users. This improves the situation
as depicted for 10th percentile users. The increasing sum rate contribution leads
to interference which overshadows the advantage in flexible bin allocation due to
variable corssover points. Hence the CDFs converges for percentiles greater than
the median. Figure 7 shows that at ISD of 1000m, implementing MMF for higher
coefficient results in greater contribution of per cell sum rate from 10th percentile
users than JFI using the same fairness coefficient. The median for MMF is also
more in line with the average per cell sum rate which is not afected by changing the
degree of fairness (η = 2 to η = 10). This explains the choice of MMF as fairness
metric in the final evalaution of QoS Balancing function Figure 7.

7.2 Analysis of GA Optimized Allocation Design

7.2.1 Signalling Analysis

Dimensions of channel matrices reveal complexity requirement for cell pathloss feed-
back. This is used to measure the signalling overhead for different Cellular MAC.
For FC-CMAC, average cell based pathloss information from each of N user groups
to the N APs in system are represented by the N2 bits for transferring 1 bit per
cell. Due to power granularity each cell information now requires V bits for trans-
mission. Hence the total signalling requirement is V N2 bits for FC-CMAC. It is
worth noting that N = Q|Nq| for any Cellular MAC. For CC-CMAC, the signalling

requirement is for V Q|Nq|
2
bits per snapshot. CC-CMAC requires Q times less

signalling overhead. This is one of the motivations for choosing CC-CMAC.

7.2.2 Complexity

The search space for joint power and bin allocation depends on B, V , and N as
per the following relationship 2NVB. Hence for fixed N and V , the complexity rises
to the order of 2B. The complexity is hence a function of the chromosome length
(total bins allocated). As a motivation to reduced chromosome length, it is possible
to reduce B while at the same time increase V such as not to affect the increase in
sum rate. This approach makes the algorithm less computationally intensive and
GA becomes feasible for modern OMC-Rs and centralized frequency planners as in
Figure 2.
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8 Conclusions

A novel QoS balancing framework for CC-CMAC is proposed in this work. The aim
is to increase spectral efficiency as well as achieve cell based fairness for given per
user power constraint. This is implemented by deriving cell based QoS balancing
function. Using analogy with graph conductance, QoS balancing problem is proved
to be NP Hard. Using joint frequency and power granularity, this problem is for-
mulated as an objective function input to a GA and compared for a range of ISDs
and bin and power quantization states. Results show that maximizing sum rate
CC-CMAC can help achieve the upper bound of the capacity region in highly dense
AP scenario. Using max−min fairness in moderately dense AP scenarios, reduced
sum rate (improvement over full reuse), can effect a slight increase in fairness. A
practical centralized frequency planner for implementing modified GA is proposed.
This framework has application for both HP and BE customers [23] alike. Current
research work under way looks into tapered cellular architectures and extension to
comply with further restriction as per a multi objective optimization design.
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Figure 1: Demonstration of Uplink Transmission by users in cells from 2 adjacent
clusters. Here the scenario is shown across 3 bins which are allocated power to cater
interference in Fixed Cluster as per CC-CMAC. Here the backhaul is also shown.
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Figure 2: GA architecture as implemented for QoS balancing formulation for a
CC-CMAC.
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Figure 3: Time complexity comparison between E[Rq(A)]∀q & R̄ (19) as imple-
mented using GA for uplink transmission undergoing flat fading and pathloss in
bin based Cellular MAC design. Here B = 5, K = 60. For log det simulation,
D is averaged over 1000 runs. For comparison the time complexity of NC-CMAC
(Q = 49) and FC-CMAC (Q = 1) are also shown.
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Figure 4: GA Flowchart for optimizing bin based allocation in CC-CMAC. POP(t0)
represents the population at reference time, t0. MAXSNAPS is the maximum
number of time snaps.
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Figure 5: Modified GA : Block size crossover operation for a CC-CMAC.
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Figure 6: Effect of ISD on Per Cell Sum Rate due to GA optimized Partial bin Reuse
(PBR) and max−min fairness via joint power and bin allocation. Here V = 5,
B = 10, AP density is varied from ISD = 200to9000m, N = 49, Q = 7, η = 3.5,
Lo = 31.5 dB, and σ2

o = 16.9 dBm/Hz over 5MHz bandwidth. For comparison, full
reuse as implemented on NC-CMAC (Q = 49) and FC-CMAC (Q = 1) are also
shown.
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The MMF is said to exhibit better performance as its slope about median is simply
a function of per cell sum rate when bin granularity is increased. Here for B ≥ 2
MMF fares better than JFI which is a common metric for measuring fairness.
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