54 research outputs found

    Improved Ultra Wideband Communication System through Adaptive Modulation and Spatial Diversity

    Get PDF
    PhDAdvances in Multimedia communications have shown the need for high data rate wireless links over short distances. This is to enhance flexibility, accessibility, portability and mobility of devices in home and enterprise environment thereby making users more productive. In 2004, the WiMedia group proposed the Multiband Orthogonal Frequency Division Multiplex Ultra Wideband (MB-OFDM UWB) system with a target of delivering data rate of 480Mbps over 3 metres. However, by now no existing commercial UWB product can meet this proposed specification. The project aims to investigate the reason why UWB technology has failed to realise its potential by carrying out detailed analysis and to seek ways of solving the technical problems. Detailed system analyses were carried out on the UWB technology using a commercial UWB product and a MB-OFDM UWB Evaluation kit. UWB channel measurements of different scenarios were carried out in order to characterise both time varying and time invariant channels. The scenarios are the realistic environments where UWB devices are operating with human subjects in various movement patterns. It gives insight into the effects of human object blocking on the MB-OFDM system performance and estimates an acceptable feedback rate in a UWB time varying channel when implementing an adaptive modulation. The adaptive modulation was proposed and implemented in the MB-OFDM system model to demonstrate the improved Bit Error Rate (BER) performance. Modulating bits are varied across the sub-channels depending on the signal to noise ratio (SNR). Sub-channels experiencing severe fading employ lower or no bit-loading while sub-channels with little or no fading utilise higher bit-loading to maintain a constant system data rate. Spatial diversity was employed to exploit different properties of the radio channel to improve performance. Good diversity gain of two receiving diversity systems using maximal ratio combining and antenna selection techniques is demonstrated in the measurements with the different antenna orientations. An antenna selection circuit is designed and implemented working together with AT90CAP9 UWB Evaluation kit, verifying an improved performance of the UWB system in an indoor environment. The maximal ratio combining technique is also implemented and demonstrated to give a better system performance on a test bed after post-processing

    Radio channel characterisation and system-level modelling for ultra wideband body-centric wireless communications

    Get PDF
    PhDThe next generation of wireless communication is evolving towards user-centric networks, where constant and reliable connectivity and services are essential. Bodycentric wireless network (BCWN) is the most exciting and emerging 4G technology for short (1-5 m) and very short (below 1 m) range communication systems. It has got numerous applications including healthcare, entertainment, surveillance, emergency, sports and military. The major difference between the BCWN and conventional wireless systems is the radio channel over which the communication takes place. The human body is a hostile medium from the radio propagation perspective and it is therefore important to understand and characterise the effect of the human body on the antenna elements, the radio propagation channel parameters and hence the system performance. In addition, fading is another concern that affects the reliability and quality of the wireless link, which needs to be taken into account for a low cost and reliable wireless communication system for body-centric networks. The complex nature of the BCWN requires operating wireless devices to provide low power requirements, less complexity, low cost and compactness in size. Apart from these characteristics, scalable data rates and robust performance in most fading conditions and jamming environment, even at low signal to noise ratio (SNR) is needed. Ultra-wideband (UWB) technology is one of the most promising candidate for BCWN as it tends to fulfill most of these requirements. The thesis focuses on the characterisation of ultra wideband body-centric radio propagation channel using single and multiple antenna techniques. Apart from channel characterisation, system level modelling of potential UWB radio transceivers for body-centric wireless network is also proposed. Channel models with respect to large scale and delay analysis are derived from measured parameters. Results and analyses highlight the consequences of static and dynamic environments in addition to the antenna positions on the performance of body-centric wireless communication channels. Extensive measurement i campaigns are performed to analyse the significance of antenna diversity to combat the channel fading in body-centric wireless networks. Various diversity combining techniques are considered in this process. Measurement data are also used to predict the performance of potential UWB systems in the body-centric wireless networks. The study supports the significance of single and multiple antenna channel characterisation and modelling in producing suitable wireless systems for ultra low power body-centric wireless networks.University of Engineering and Technology Lahore Pakista

    Performance Enhancement of Ultra Wideband WPAN using Narrowband Interference Mitigation Techniques

    Get PDF
    A new promising technique adopted by 4G community is ultra-wideband technology, which offers a solution for high bandwidth, high data rate, low cost, low power consumption, position location capability etc. A conventional type of UWB communication is impulse radio, where very short transient pulses are transmitted rather than a modulated carrier. Consequently, the spectrum is spread over several GHz, complying with the definition of UWB. Currently, the Rake receiver used for spread spectrum is considered a very promising candidate for UWB reception, due to its capability of collecting multipath components. Since UWB signals occupy such a large bandwidth, they operate as an overlay system with other existing narrowband (NB) radio systems overlapping with their bands. In order to ensure a robust communication link, the issue of coexistence and interference of UWB systems with current indoor wireless systems must be considered. Ultra Wideband technology with its application, advantages and disadvantages are discussed in detail. Design of UWB short pulse and a detail study IEEE 802.15.3a UWB channel models statistical characteristics have been analyzed through simulation. Simulation studies are performed and improved techniques are suggested for interference reduction in both Impulse Radio based UWB and Transmitted Reference type of UWB system. Modified TR-UWB receiver with UWB pulse design at transmitter end and notch filtering at receiver’s front end proved to be more efficient in single NBI, multiple NBI and WBI suppression. Extensive simulation studies to support the efficacy of the proposed schemes are carried out in the MATLAB. Bit error rate (BER) performance study for different data rates over different UWB channel models are also analyzed using proposed receiver models. Performance improvement of TR-UWB system is noticed using the proposed techniques

    Performance analysis of H.264 encoder for high-definition video transmission over ultra-wideband communication link.

    Get PDF
    With the technological advancement, entertainment has become revolutionized and the High-definition (HD) video has become a common feature of our modern amusement devices. Moreover, the demand for wireless transmission of HD video is rising increasingly for its ubiquitous nature, easy installation and relocation. The high bandwidth requirement is the main concern for wireless transmission of high quality video streams. Research has been going on by the consumer electronics industry to provide different solutions of this issue, for the last few years. In this research work, HD video transmission feasibility using the Ultra-wideband (UWB) communication channel is analyzed. The UWB channel is selected for its short-range, high-speed data transmission capability at low-cost, and low-power consumption. The maximum transmitting range of this technology is about 10 m at 100 Mbps data rate. Simulation is conducted by controlling key parameters, such as, in-loop deblocking filter, group of pictures, and quantization parameter of an H.264/AVC encoder. Here, standard HD video streams with different motion characteristics are used, and the impact of these parameters change on the reconstructed video quality and the broadcasting data rate are analyzed. Finally, a generalized parameters settings, and a video content dependent settings for an H.264/AVC encoder are proposed for different bandwidth requirements, as well as acceptable video quality. Performance evaluation of these parameters settings is performed, and the results are quite satisfactory as long as the symbol energy to noise power density ratio, Es/No, is above 15. With the proposed parameters settings, maximum 20 Mbps data rate is achieved with 33.5 dB Y-PSNR

    Location-aware and Cooperative Communication in an OFDM based Ultra-wideband Radio System

    Get PDF
    Die auf dem orthogonalen Frequenzmultiplex (OFDM, Orthogonal Frequency Division Multiplexing) basierende Ultra-Breitband-(UWB, Ultra-wideband) Technologie stellt eine verheißungsvolle Technologie dar, um hohe Datenübertragungsraten und Lokalisierungs- und deren Tracking-Anwendungen zu realisieren. Im Gegensatz zu anderen Systemen ist die Reichweite von OFDM UWB Systemen durch eine strenge Regulierung sehr stark begrenzt. Darüber hinaus ist die Lokalisierung nicht zufriedenstellend. Damit sind bereits die beiden größten Nachteile im Bezug auf bestehende OFDM UWB System benannt. Die Motivation und Hauptaufgabe dieser Arbeit ist damit die Lösung der eben genannten Nachteile. Es wird ein OFDM UWB System vorgestellt, das Space Frequency Block Coding (SFBC) und FFH OFDM miteinander verbindet. Dieses vereinte System wertet die räumliche und frequentielle Diversität eines OFDM-Symbols aus und zeigt dabei eine hohe Güte in der Punkt-zu-Punkt Kommunikation. Beim Design von kooperativen UWB-Systemen wird ein AF-(Amplify-and-Forward) basiertes echtzeitfähriges SFBC-TFC (Time Frequency Code) Protokoll vorgestellt. In Kombination mit den oben genannten Strategien, kann eine Erhöhung in den Reichweite von OFDM UWB Systemen erreicht werden. In den Ausführungen zur Ortung anhand von OFDM UWB Signalen wird ein Algorithmus entwickelt, der aufgrund einer Kanalschätzung eine Minimierung des Phasenversatzes zwischen geschätztem und realem Kanal im Frequenzbereich durchführt. Diese Minimierung erwirkt eine Unterdrückung der Energie am Ende der Kanalimpulsantwort (CIR, Channel Impulse Response) im Zeitbereich. Zum Zweck der einfachen Implementierbarkeit wird das RTT (Round-Trip-Time) Messprotokoll in WiMedia UWB Systemen dahingehend verändert, dass das mobile Gerät keine Minimierung vornimmt. Es leitet seine Informationen an das mit ihm Kommunizierende, stationäre Gerät weiter, das direkt den gesamten Zeitversatz innerhalb des RTT berechnet. Der vorgeschlagene Algorithmus und das vorgeschlagene Protokoll haben ein besseres Ortungsvermögen als bekannte UWB Lokalisierungsprozeduren und bedürfen nur etwas zusätzlicher Berechnungsleistung. Diese Arbeit zeigt, dass Systeme mit hohen Datenraten wie OFDM UWB auch eine gute Lokalisierungsgenauigkeit erreichen können. Zusätzlich ist die Schwachstelle einer limitierten Reichweite ebenso kompensiert worden. Diese Erweiterungen dienen der Entwicklung von nützlichen UWB-Applikationen und sichern den Anteil der OFDM UWB Technik im Markt der drahtlosen Kommunikationssysteme der Zukunft.The Orthogonal Frequency Division Multiplexing (OFDM) based Ultra-wideband (UWB) is one of the most promising technologies for high data rate transmission and localization and tracking applications. However, the restricted transmit power causes a shorter communication range compared to other indoor radio systems. In addition, the ranging functionality is still not well supported by the current OFDM based UWB technology. These two drawbacks are the main disadvantages existing in the current OFDM UWB systems. To get rid of the two drawbacks, is the motivation and main task of this thesis. Within the scope of this thesis, a joint design of Space Frequency Block Coding (SFBC) with Fast Frequency Hopping (FFH) OFDM scheme is investigated in a multiple antenna OFDM UWB system. The joint scheme is able to exploit spatial and frequency domain diversity within one OFDM symbol, and can improve the data transmission quality in point-to-point communication. To the cooperative communication in UWB systems, an Amplify-and-Forward (AF) based distributed SFBC-TFC (Time Frequency Code) protocol is designed. In combination with the aforementioned strategies an increase in the communication range is achieved. Within the scope of this thesis, accurate ranging schemes for the OFDM UWB systems are designed. Fine ToA detection method based on the estimated channel is developed. The fine ToA is estimated by minimizing the accumulated energy of the tail taps of the estimated Channel Impulse Response (CIR). For the purpose of a feasible implementation, the Round-Trip-Time (RTT) measurement protocol in [WiM09] is modified in a way that the complicated computational tasks are burden onto the powerful device. The proposed fine ToA detection method and modified RTT protocol provides an accurate ranging capability and ensures feasible implementation to the MB-OFDM UWB systems. In carrying out this scheme, only some computational tasks are needed, no extra hardware support is required. It is shown in this thesis, OFDM UWB systems with very high data rate transmission and good ranging capability could be achieved, and the weakness of limited communication range is also compensated. These improvements will cause the rise of more valuable UWB applications for customers and ensures a bright future for the OFDM UWB technique

    Cooperative Radio Communications for Green Smart Environments

    Get PDF
    The demand for mobile connectivity is continuously increasing, and by 2020 Mobile and Wireless Communications will serve not only very dense populations of mobile phones and nomadic computers, but also the expected multiplicity of devices and sensors located in machines, vehicles, health systems and city infrastructures. Future Mobile Networks are then faced with many new scenarios and use cases, which will load the networks with different data traffic patterns, in new or shared spectrum bands, creating new specific requirements. This book addresses both the techniques to model, analyse and optimise the radio links and transmission systems in such scenarios, together with the most advanced radio access, resource management and mobile networking technologies. This text summarises the work performed by more than 500 researchers from more than 120 institutions in Europe, America and Asia, from both academia and industries, within the framework of the COST IC1004 Action on "Cooperative Radio Communications for Green and Smart Environments". The book will have appeal to graduates and researchers in the Radio Communications area, and also to engineers working in the Wireless industry. Topics discussed in this book include: • Radio waves propagation phenomena in diverse urban, indoor, vehicular and body environments• Measurements, characterization, and modelling of radio channels beyond 4G networks• Key issues in Vehicle (V2X) communication• Wireless Body Area Networks, including specific Radio Channel Models for WBANs• Energy efficiency and resource management enhancements in Radio Access Networks• Definitions and models for the virtualised and cloud RAN architectures• Advances on feasible indoor localization and tracking techniques• Recent findings and innovations in antenna systems for communications• Physical Layer Network Coding for next generation wireless systems• Methods and techniques for MIMO Over the Air (OTA) testin

    A new vision of software defined radio: from academic experimentation to industrial explotation

    Get PDF
    The broad objective of this study is to examine the role of Software Defined Radio in an industrial field. Basically examines the changes that have to be done to achieve moving this technology in a commercial domain. It is important to predict the impacts of the introduction of Software Defined Radio in the telecommunications industry because it is a real future that is coming. The project starts with the evolution of mobile telecommunications systems through the history. Following this, Software Defined Radio is defined and its main features are commented such as its architecture. Moreover, it wants to predict the changes that the telecommunications industry will might suffer with the introduction of SDR and some future structural and organizational variations are suggested. Additionally, it is discussed the positive and negative aspects of the introduction of SDR in the commercial domain from different points of view and finally, the future SDR mobile phone is described with its possible hardware and software.Outgoin

    Cooperative Radio Communications for Green Smart Environments

    Get PDF
    The demand for mobile connectivity is continuously increasing, and by 2020 Mobile and Wireless Communications will serve not only very dense populations of mobile phones and nomadic computers, but also the expected multiplicity of devices and sensors located in machines, vehicles, health systems and city infrastructures. Future Mobile Networks are then faced with many new scenarios and use cases, which will load the networks with different data traffic patterns, in new or shared spectrum bands, creating new specific requirements. This book addresses both the techniques to model, analyse and optimise the radio links and transmission systems in such scenarios, together with the most advanced radio access, resource management and mobile networking technologies. This text summarises the work performed by more than 500 researchers from more than 120 institutions in Europe, America and Asia, from both academia and industries, within the framework of the COST IC1004 Action on "Cooperative Radio Communications for Green and Smart Environments". The book will have appeal to graduates and researchers in the Radio Communications area, and also to engineers working in the Wireless industry. Topics discussed in this book include: • Radio waves propagation phenomena in diverse urban, indoor, vehicular and body environments• Measurements, characterization, and modelling of radio channels beyond 4G networks• Key issues in Vehicle (V2X) communication• Wireless Body Area Networks, including specific Radio Channel Models for WBANs• Energy efficiency and resource management enhancements in Radio Access Networks• Definitions and models for the virtualised and cloud RAN architectures• Advances on feasible indoor localization and tracking techniques• Recent findings and innovations in antenna systems for communications• Physical Layer Network Coding for next generation wireless systems• Methods and techniques for MIMO Over the Air (OTA) testin

    Ultra Wideband

    Get PDF
    Ultra wideband (UWB) has advanced and merged as a technology, and many more people are aware of the potential for this exciting technology. The current UWB field is changing rapidly with new techniques and ideas where several issues are involved in developing the systems. Among UWB system design, the UWB RF transceiver and UWB antenna are the key components. Recently, a considerable amount of researches has been devoted to the development of the UWB RF transceiver and antenna for its enabling high data transmission rates and low power consumption. Our book attempts to present current and emerging trends in-research and development of UWB systems as well as future expectations

    In-band relays for next generation communication systems

    Get PDF
    Next generation mobile communication systems will operate at high system bandwidths of up to 100MHz and at carrier frequencies beyond 2GHz to provide peak data rates of up to 1Gbit/s with similar average revenues per user as todays cellular networks. High bit rates should be available to all users in a cell which is challenging due to the unfavorable propagation conditions in these bands. In-band relays are a seen as a promising technology for cellular networks to extend the high bit rate coverage and to enable cost efficient network deployments. The research in this thesis has contributed to the development of the relaying concept within the European research project WINNER. WINNER has designed a next generation radio system concept based on Orthogonal Frequency Division Multiple Access (OFDMA) with the inclusion of relays as one of the major innovations. In our work we have identified the radio resource management as the most important function to exploit the potential benefits of relay based deployments. We develop a flexible radio resource management framework that adapts to a wide range of deployments, whereas our main focus is on metropolitan area deployments. Here we propose to utilize a dynamic resource assignment based on soft frequency reuse. Further, we propose a practical way to integrate cooperative relaying in a relay network. This concept allows the cooperation of multiple radio access points within a relay enhanced cell with low overhead and small delays. In system simulations we compare the performance of relay deployments to base station only deployments in a metropolitan area network. Our results show that relay deployments are cost efficient and they increase both the network throughput as well as the high bit rate coverage of the network. Further, they show that our proposed soft frequency reuse scheme outperforms competing interference coordination schemes in the studied metropolitan area scenario. Even though the results have been obtained for WINNER system parameters, the conclusions can also be applied to OFDMA based systems such as 3GPP Long Term Evolution and WiMAX
    • …
    corecore