2,700 research outputs found

    Multiuser MIMO-OFDM for Next-Generation Wireless Systems

    No full text
    This overview portrays the 40-year evolution of orthogonal frequency division multiplexing (OFDM) research. The amelioration of powerful multicarrier OFDM arrangements with multiple-input multiple-output (MIMO) systems has numerous benefits, which are detailed in this treatise. We continue by highlighting the limitations of conventional detection and channel estimation techniques designed for multiuser MIMO OFDM systems in the so-called rank-deficient scenarios, where the number of users supported or the number of transmit antennas employed exceeds the number of receiver antennas. This is often encountered in practice, unless we limit the number of users granted access in the base station’s or radio port’s coverage area. Following a historical perspective on the associated design problems and their state-of-the-art solutions, the second half of this treatise details a range of classic multiuser detectors (MUDs) designed for MIMO-OFDM systems and characterizes their achievable performance. A further section aims for identifying novel cutting-edge genetic algorithm (GA)-aided detector solutions, which have found numerous applications in wireless communications in recent years. In an effort to stimulate the cross pollination of ideas across the machine learning, optimization, signal processing, and wireless communications research communities, we will review the broadly applicable principles of various GA-assisted optimization techniques, which were recently proposed also for employment inmultiuser MIMO OFDM. In order to stimulate new research, we demonstrate that the family of GA-aided MUDs is capable of achieving a near-optimum performance at the cost of a significantly lower computational complexity than that imposed by their optimum maximum-likelihood (ML) MUD aided counterparts. The paper is concluded by outlining a range of future research options that may find their way into next-generation wireless systems

    Fast Convergence and Reduced Complexity Receiver Design for LDS-OFDM System

    Get PDF
    Low density signature for OFDM (LDS-OFDM) is able to achieve satisfactory performance in overloaded conditions, but the existing LDS-OFDM has the drawback of slow convergence rate for multiuser detection (MUD) and high receiver complexity. To tackle these problems, we propose a serial schedule for the iterative MUD. By doing so, the convergence rate of MUD is accelerated and the detection iterations can be decreased. Furthermore, in order to exploit the similar sparse structure of LDS-OFDM and LDPC code, we utilize LDPC codes for LDS-OFDM system. Simulations show that compared with existing LDS-OFDM, the LDPC code improves the system performance

    Code-timing synchronization in DS-CDMA systems using space-time diversity

    Get PDF
    The synchronization of a desired user transmitting a known training sequence in a direct-sequence (DS) asynchronous code-division multiple-access (CDMA) sys-tem is addressed. It is assumed that the receiver consists of an arbitrary antenna array and works in a near-far, frequency-nonselective, slowly fading channel. The estimator that we propose is derived by applying the maximum likelihood (ML) principle to a signal model in which the contribution of all the interfering compo-nents (e.g., multiple-access interference, external interference and noise) is modeled as a Gaussian term with an unknown and arbitrary space-time correlation matrix. The main contribution of this paper is the fact that the estimator makes eÆcient use of the structure of the signals in both the space and time domains. Its perfor-mance is compared with the Cramer-Rao Bound, and with the performance of other methods proposed recently that also employ an antenna array but only exploit the structure of the signals in one of the two domains, while using the other simply as a means of path diversity. It is shown that the use of the temporal and spatial structures is necessary to achieve synchronization in heavily loaded systems or in the presence of directional external interference.Peer ReviewedPostprint (published version

    Chaotic communications over radio channels

    Get PDF

    Estimation of Sparse MIMO Channels with Common Support

    Get PDF
    We consider the problem of estimating sparse communication channels in the MIMO context. In small to medium bandwidth communications, as in the current standards for OFDM and CDMA communication systems (with bandwidth up to 20 MHz), such channels are individually sparse and at the same time share a common support set. Since the underlying physical channels are inherently continuous-time, we propose a parametric sparse estimation technique based on finite rate of innovation (FRI) principles. Parametric estimation is especially relevant to MIMO communications as it allows for a robust estimation and concise description of the channels. The core of the algorithm is a generalization of conventional spectral estimation methods to multiple input signals with common support. We show the application of our technique for channel estimation in OFDM (uniformly/contiguous DFT pilots) and CDMA downlink (Walsh-Hadamard coded schemes). In the presence of additive white Gaussian noise, theoretical lower bounds on the estimation of SCS channel parameters in Rayleigh fading conditions are derived. Finally, an analytical spatial channel model is derived, and simulations on this model in the OFDM setting show the symbol error rate (SER) is reduced by a factor 2 (0 dB of SNR) to 5 (high SNR) compared to standard non-parametric methods - e.g. lowpass interpolation.Comment: 12 pages / 7 figures. Submitted to IEEE Transactions on Communicatio

    Final report on the evaluation of RRM/CRRM algorithms

    Get PDF
    Deliverable public del projecte EVERESTThis deliverable provides a definition and a complete evaluation of the RRM/CRRM algorithms selected in D11 and D15, and evolved and refined on an iterative process. The evaluation will be carried out by means of simulations using the simulators provided at D07, and D14.Preprin
    • …
    corecore