48 research outputs found

    Large-Scale-Fading Decoding in Cellular Massive MIMO Systems with Spatially Correlated Channels

    Full text link
    Massive multiple-input--multiple-output (MIMO) systems can suffer from coherent intercell interference due to the phenomenon of pilot contamination. This paper investigates a two-layer decoding method that mitigates both coherent and non-coherent interference in multi-cell Massive MIMO. To this end, each base station (BS) first estimates the channels to intra-cell users using either minimum mean-squared error (MMSE) or element-wise MMSE (EW-MMSE) estimation based on uplink pilots. The estimates are used for local decoding on each BS followed by a second decoding layer where the BSs cooperate to mitigate inter-cell interference. An uplink achievable spectral efficiency (SE) expression is computed for arbitrary two-layer decoding schemes. A closed-form expression is then obtained for correlated Rayleigh fading, maximum-ratio combining, and the proposed large-scale fading decoding (LSFD) in the second layer. We also formulate a sum SE maximization problem with both the data power and LSFD vectors as optimization variables. Since this is an NP-hard problem, we develop a low-complexity algorithm based on the weighted MMSE approach to obtain a local optimum. The numerical results show that both data power control and LSFD improves the sum SE performance over single-layer decoding multi-cell Massive MIMO systems.Comment: 17 pages; 10 figures; Accepted for publication in IEEE Transactions on Communication

    Making Cell-Free Massive MIMO Competitive with MMSE Processing and Centralized Implementation

    Get PDF
    Cell-free Massive MIMO is considered as a promising technology for satisfying the increasing number of users and high rate expectations in beyond-5G networks. The key idea is to let many distributed access points (APs) communicate with all users in the network, possibly by using joint coherent signal processing. The aim of this paper is to provide the first comprehensive analysis of this technology under different degrees of cooperation among the APs. Particularly, the uplink spectral efficiencies of four different cell-free implementations are analyzed, with spatially correlated fading and arbitrary linear processing. It turns out that it is possible to outperform conventional Cellular Massive MIMO and small cell networks by a wide margin, but only using global or local minimum mean-square error (MMSE) combining. This is in sharp contrast to the existing literature, which advocates for maximum-ratio combining. Also, we show that a centralized implementation with optimal MMSE processing not only maximizes the SE but largely reduces the fronthaul signaling compared to the standard distributed approach. This makes it the preferred way to operate Cell-free Massive MIMO networks. Non-linear decoding is also investigated and shown to bring negligible improvements

    Making Cell-Free Massive MIMO Competitive With MMSE Processing and Centralized Implementation

    Get PDF
    Cell-free Massive MIMO is considered as a promising technology for satisfying the increasing number of users and high rate expectations in beyond-5G networks. The key idea is to let many distributed access points (APs) communicate with all users in the network, possibly by using joint coherent signal processing. The aim of this paper is to provide the first comprehensive analysis of this technology under different degrees of cooperation among the APs. Particularly, the uplink spectral efficiencies of four different cell-free implementations are analyzed, with spatially correlated fading and arbitrary linear processing. It turns out that it is possible to outperform conventional Cellular Massive MIMO and small cell networks by a wide margin, but only using global or local minimum mean-square error (MMSE) combining. This is in sharp contrast to the existing literature, which advocates for maximum-ratio combining. Also, we show that a centralized implementation with optimal MMSE processing not only maximizes the SE but largely reduces the fronthaul signaling compared to the standard distributed approach. This makes it the preferred way to operate Cell-free Massive MIMO networks. Non-linear decoding is also investigated and shown to bring negligible improvements.Comment: 14 pages, 6 figures, To appear in IEEE Transactions on Wireless Communication

    Two-Layer Decoding in Cellular Massive MIMO Systems with Spatial Channel Correlation

    Full text link
    This paper studies a two-layer decoding method that mitigates inter-cell interference in multi-cell Massive MIMO systems. In layer one, each base station (BS) estimates the channels to intra-cell users and uses the estimates for local decoding on each BS, followed by a second decoding layer where the BSs cooperate to mitigate inter-cell interference. An uplink achievable spectral efficiency (SE) expression is computed for arbitrary two-layer decoding schemes, while a closed-form expression is obtained for correlated Rayleigh fading channels, maximum-ratio combining (MRC), and large-scale fading decoding (LSFD) in the second layer. We formulate a non-convex sum SE maximization problem with both the data power and LSFD vectors as optimization variables and develop an algorithm based on the weighted MMSE (minimum mean square error) approach to obtain a stationary point with low computational complexity.Comment: 4 figures. Accepted by ICC 2019. arXiv admin note: substantial text overlap with arXiv:1807.0807

    Two-Layer Decoding in Cellular Massive MIMO Systems with Spatial Channel Correlation

    Get PDF
    This paper studies a two-layer decoding method that mitigates inter-cell interference in multi-cell Massive MIMO systems. In layer one, each base station (BS) estimates the channels to intra-cell users and uses the estimates for local decoding on each BS, followed by a second decoding layer where the BSs cooperate to mitigate inter-cell interference. An uplink achievable spectral efficiency (SE) expression is computed for arbitrary two-layer decoding schemes, while a closed-form expression is obtained for correlated Rayleigh fading channels, maximum-ratio combining (MRC), and large-scale fading decoding (LSFD) in the second layer. We formulate a non-convex sum SE maximization problem with both the data power and LSFD vectors as optimization variables and develop an algorithm based on the weighted MMSE (minimum mean square error) approach to obtain a stationary point with low computational complexity.Comment: 4 figures. Accepted by ICC 2019. arXiv admin note: substantial text overlap with arXiv:1807.0807

    Energy-Efficient Cell-Free Massive MIMO Through Sparse Large-Scale Fading Processing

    Full text link
    Cell-free massive multiple-input multiple-output (CF mMIMO) systems serve the user equipments (UEs) by geographically distributed access points (APs) by means of joint transmission and reception. To limit the power consumption due to fronthaul signaling and processing, each UE should only be served by a subset of the APs, but it is hard to identify that subset. Previous works have tackled this combinatorial problem heuristically. In this paper, we propose a sparse distributed processing design for CF mMIMO, where the AP-UE association and long-term signal processing coefficients are jointly optimized. We formulate two sparsity-inducing mean-squared error (MSE) minimization problems and solve them by using efficient proximal approaches with block-coordinate descent. For the downlink, more specifically, we develop a virtually optimized large-scale fading precoding (V-LSFP) scheme using uplink-downlink duality. The numerical results show that the proposed sparse processing schemes work well in both uplink and downlink. In particular, they achieve almost the same spectral efficiency as if all APs would serve all UEs, while the energy efficiency is 2-4 times higher thanks to the reduced processing and signaling.Comment: 37 pages, 9 figures, accepted for publication in the IEEE Transactions on Wireless Communication

    Foundations of User-Centric Cell-Free Massive MIMO

    Full text link
    Imagine a coverage area where each mobile device is communicating with a preferred set of wireless access points (among many) that are selected based on its needs and cooperate to jointly serve it, instead of creating autonomous cells. This effectively leads to a user-centric post-cellular network architecture, which can resolve many of the interference issues and service-quality variations that appear in cellular networks. This concept is called User-centric Cell-free Massive MIMO (multiple-input multiple-output) and has its roots in the intersection between three technology components: Massive MIMO, coordinated multipoint processing, and ultra-dense networks. The main challenge is to achieve the benefits of cell-free operation in a practically feasible way, with computational complexity and fronthaul requirements that are scalable to enable massively large networks with many mobile devices. This monograph covers the foundations of User-centric Cell-free Massive MIMO, starting from the motivation and mathematical definition. It continues by describing the state-of-the-art signal processing algorithms for channel estimation, uplink data reception, and downlink data transmission with either centralized or distributed implementation. The achievable spectral efficiency is mathematically derived and evaluated numerically using a running example that exposes the impact of various system parameters and algorithmic choices. The fundamental tradeoffs between communication performance, computational complexity, and fronthaul signaling requirements are thoroughly analyzed. Finally, the basic algorithms for pilot assignment, dynamic cooperation cluster formation, and power optimization are provided, while open problems related to these and other resource allocation problems are reviewed. All the numerical examples can be reproduced using the accompanying Matlab code.Comment: This is the authors' version of the manuscript: \"Ozlem Tugfe Demir, Emil Bj\"ornson and Luca Sanguinetti (2021), "Foundations of User-Centric Cell-Free Massive MIMO", Foundations and Trends in Signal Processing: Vol. 14, No. 3-4, pp 162-47
    corecore