264 research outputs found

    Channel Estimation for MIMO MC-CDMA Systems

    Full text link
    The concepts of MIMO MC-CDMA are not new but the new technologies to improve their functioning are an emerging area of research. In general, most mobile communication systems transmit bits of information in the radio space to the receiver. The radio channels in mobile radio systems are usually multipath fading channels, which cause inter-symbol interference (ISI) in the received signal. To remove ISI from the signal, there is a need of strong equalizer. In this thesis we have focused on simulating the MIMO MC-CDMA systems in MATLAB and designed the channel estimation for them

    Statistical Modeling of Multiple Access Interference Power: a Nakagami-m Random Variable

    Get PDF
    This paper proposes a statistical model for the total multiple access interference (MAI) power for both Direct-Sequence Code Division Multiple Access (DS-CDMA) and Multicarrier Code Division Multiple Access (MC-CDMA) systems. We consider the use of both Walsh-Hadamard (WH) and Gold spreading codes transmitting over the asynchronous uplink channel. Detailed signal models of both CDMA systems are derived illustrating the production of MAI under asynchronous conditions. The paper demonstrates the Gaussian nature of the total MAI and shows that the probability density function (pdf) of the total MAI power can be very accurately characterized by the Nakagami-m distribution

    Capacity, coding and interference cancellation in multiuser multicarrier wireless communications systems

    Get PDF
    Multicarrier modulation and multiuser systems have generated a great deal of research during the last decade. Orthogonal Frequency Division Multiplexing (OFDM) is a multicarrier modulation generated with the inverse Discrete Fourier Transform, which has been adopted for standards in wireless and wire-line communications. Multiuser wireless systems using multicarrier modulation suffer from the effects of dispersive fading channels, which create multi-access, inter-symbol, and inter-carrier interference (MAI, ISI, ICI). Nevertheless, channel dispersion also provides diversity, which can be exploited and has the potential to increase robustness against fading. Multiuser multi-carrier systems can be implemented using Orthogonal Frequency Division Multiple Access (OFDMA), a flexible orthogonal multiplexing scheme that can implement time and frequency division multiplexing, and using multicarrier code division multiple access (MC-CDMA). Coding, interference cancellation, and resource sharing schemes to improve the performance of multiuser multicarrier systems on wireless channels were addressed in this dissertation. Performance of multiple access schemes applied to a downlink multiuser wireless system was studied from an information theory perspective and from a more practical perspective. For time, frequency, and code division, implemented using OFDMA and MC-CDMA, the system outage capacity region was calculated for a correlated fading channel. It was found that receiver complexity determines which scheme offers larger capacity regions, and that OFDMA results in a better compromise between complexity and performance than MC-CDMA. From the more practical perspective of bit error rate, the effects of channel coding and interleaving were investigated. Results in terms of coding bounds as well as simulation were obtained, showing that OFDMAbased orthogonal multiple access schemes are more sensitive to the effectiveness of the code to provide diversity than non-orthogonal, MC-CDMA-based schemes. While cellular multiuser schemes suffer mainly from MAI, OFDM-based broadcasting systems suffer from ICI, in particular when operating as a single frequency network (SFN). It was found that for SFN the performance of a conventional OFDM receiver rapidly degrades when transmitters have frequency synchronization errors. Several methods based on linear and decision-feedback ICI cancellation were proposed and evaluated, showing improved robustness against ICI. System function characterization of time-variant dispersive channels is important for understanding their effects on single carrier and multicarrier modulation. Using time-frequency duality it was shown that MC-CDMA and DS-CDMA are strictly dual on dispersive channels. This property was used to derive optimal matched filter structures, and to determine a criterion for the selection of spreading sequences for both DS and MC CDMA. The analysis of multiple antenna systems provided a unified framework for the study of DS-CDMA and MC-CDMA on time and frequency dispersive channels, which can also be used to compare their performance

    Statistical Analysis of Interference in Asynchronous MC-CDMA Systems

    Full text link
    Two major sources of interference affect asynchronous MC-CDMA systems, i.e. multiple access interference due to subcarriers with the same frequency (MAI) and multiple access interference due to subcarriers with different frequency (ICI). Both MAI and ICI are generally modelled as zero-mean Gaussian random variable and their power has been previously been derived in the case of uniformly distributed timing offsets. In this paper, we derive an expression of the conditional power of the MAI and ICI as a function of timing offset. The advantage is that the interference power can then be derived for various distributions of the timing offsets. We then apply the expression to calculating the MAI and ICI power for two different distributions of timing offsets, i.e. uniform distribution and Poisson distribution. Finally, we propose a statistical model for asynchronous MC-CDMA systems that will simplify the computer simulation process of these systems. It is based on modelling the asynchronous system with a synchronous system followed by additive noise representing the MAI and ICI. The model is validated by comparing the BER at the output of the asynchronous system and the model

    Discrete Wavelet Transform Based Wireless Digital Communication Systems

    Get PDF

    Near-Instantaneously Adaptive HSDPA-Style OFDM Versus MC-CDMA Transceivers for WIFI, WIMAX, and Next-Generation Cellular Systems

    No full text
    Burts-by-burst (BbB) adaptive high-speed downlink packet access (HSDPA) style multicarrier systems are reviewed, identifying their most critical design aspects. These systems exhibit numerous attractive features, rendering them eminently eligible for employment in next-generation wireless systems. It is argued that BbB-adaptive or symbol-by-symbol adaptive orthogonal frequency division multiplex (OFDM) modems counteract the near instantaneous channel quality variations and hence attain an increased throughput or robustness in comparison to their fixed-mode counterparts. Although they act quite differently, various diversity techniques, such as Rake receivers and space-time block coding (STBC) are also capable of mitigating the channel quality variations in their effort to reduce the bit error ratio (BER), provided that the individual antenna elements experience independent fading. By contrast, in the presence of correlated fading imposed by shadowing or time-variant multiuser interference, the benefits of space-time coding erode and it is unrealistic to expect that a fixed-mode space-time coded system remains capable of maintaining a near-constant BER

    Signal processing topics in multicarrier modulation : frequency offset correction for OFDM and multiuser interference cancellation for MC-CDMA

    Get PDF
    Orthogonal frequency division multiplexing (OFDM) is discussed as a special form of multi-carrier modulation (MCM). One major problem of the OFDM system is the sensitivity to an unknown frequency offset at the receiver. To improve the performance of the OFDM system, correction of the frequency offset is required before decision making. An adaptive method of frequency offset correction is presented. The adaptation algorithm used here is based on the LMS and the estimation is proven unbiased. A multiuser communications system having similar signal structure to the OFDM system, termed as multi-carrier code division multiple access (MC-CDMA), is discussed. The MC-CDMA system is susceptible to multiuser interference. Although orthogonal multiuser codes are used, the frequency selective fading might destroy the orthogonality between different codes and result in multiuser interference. The conventional decorrelator can be used to cancel such interference completely but has the disadvantage of enhancing noise power. An adaptive decorrelation algorithm, known as the Bootstrap algorithm, is implemented to separate interference from the desired user\u27s signal. Such algorithm is shown to perform better than the conventional decorrelator particularly in the low interference region

    Adaptive interference cancelation techniques for multicarrier modulated systems

    Get PDF
    Current wireline systems and wireless broadcasting systems employ multicarrier modulation (MCM). This includes the high-rate digital subscriber line (HDSL), digital audio broadcasting system (DAB) and the digital terrestrial television broadcasting system (dTTb). Multicarrier modulation is also envisioned for high-speed indoor wireless local area networks (WLAN). Additionally, multicarrier code division multiple access (MC-CDMA), a hybrid of orthogonal frequency division multiplexing (OFDM) and CDMA, is proposed for the downlink (base-to-mobile) of a 3rd generation wireless system as part of the IMT-2000 standardization process. The performance of an MC-CDMA system--similar to a direct sequence CDMA (DS-CDMA) system--is limited by the presence of multiple access interference (MAI) . Downlink communications also suffers from MAI as a result of the multipath channel effect, even if it implements orthogonal code multiplexing. Additionally, transmissions aimed at different mobile users may be assigned different powers in order to increase the system capacity, essentially creating a near-far problem for some users. Due to the MC-CDMA signal structure the conventional decorrelator (based on the inverse of the correlation matrix) is dependent on the channel coefficients, suggesting the use of an adaptive multiuser detector, which can track a time-variant channel. The performance of a blind adaptive multiuser detector for MC-CDMA, based on the bootstrap algorithm, is investigated and compared to the performance of the conventional decorrelator. Additionally, the performance is investigated for different channel conditions. First, for a non-faded flat additive white Gaussian noise (AWGN) channel. Second, for a frequency selective channel with and without correlation between the channel coefficients at the different subcarriers. In general, the mobile terminal suffers from limited available resources such as computing power or battery life and, therefore, cannot accommodate the same level of receiver complexity as the base station. For the downlink, however, the received signal structure is less complex due to the assumed synchronized transmission. Moreover, the mobile receiver is merely required to detect the desired user\u27s data stream. To reduce the complexity, detectors are proposed that do not require knowledge of the active users nor their respective codes, but rather use a combined code to represent all the interfering users at once. The performance of the reduced complexity conventional decorrelator is compared to the performance of an adaptive reduced complexity detector using the bootstrap algorithm. The performance of these detectors is also investigated for the aforementioned channel types. For spectral-efficiency, closely spaced subcarriers are used in a multicarrier modulated system. A resulting drawback is a high sensitivity of the performance to a frequency offset. This results from a Doppler shift, due to mobile movement, as well as from a mismatch between the carrier frequencies at the transmitter and receiver. To mitigate this problem an adaptive decorrelator based frequency offset correction scheme is developed for OFDM and its performance is investigated. Additionally, a blind frequency offset estimation and correction structure is proposed based on a stochastic gradient method. The convergence and statistical properties of this estimator are investigated. A blind adaptive joint multiuser detection and frequency offset correction structure for downlink MC-CDMA is developed. This detector is a combination of the structures for multiuser detection for MC-CDMA and frequency offset correction for OFDM. Moreover, the performance of this detector is investigated and compared to a joint detector based on a minimum mean square error (MMSE) criterion
    • …
    corecore