4,253 research outputs found

    Performance Analysis of Polarization Diversity for Indoor Scenarios at 41.4 GHz and 61.5 GHz

    Get PDF
    We present the radio channel experiments conducted in indoor scenarios to test the performance of a dual orthogonal polarization scheme in the single-branch receiver end of a mobile system with a centre frequency of 41.4 GHz and 61.5 GHz. The diversity gain has been obtained according to three main combination methods for an outage probability of 1%: signal selection, equal gain combining, and maximal ratio combining. Diversity gain calculated ranges from 0.25 to 4.5 dB, depending on the combination technique used, the radiation pattern, the scenario, and the frequency band. The spatial variation of the cross-polar discrimination factor (XPD) has been estimated. The XPD ranges from 31 dB to 34 dB at 41.4 GHz and between 26 dB and 29 dB for the 61.5 GHz band. From the gain and discrimination results, we evaluated the performance of this scheme to conclude its suitability as either a diversity technique for reducing signal fading, as the 41.4 GHz, or as a method for increasing the link capacity in the 61.5 GHz case

    Design of a Planar Eleven Antenna for Optimal MIMO Performance as a Wideband Micro Base-station Antenna

    Get PDF
    A new low-profile planar Eleven antenna is designed for optimal MIMO performance as a wideband MIMO antenna for micro base-stations in future wireless communication systems. The design objective has been to optimize both the reflection coefficient at the input port of the antenna and the 1-bitstream and 2-bitstream MIMO efficiency of the antenna at the same time, in both the Rich Isotropic MultiPath (RIMP) and Random Line-of-Sight (Random-LOS) environments. The planar Eleven antenna can be operated in 2-, 4-, and 8-port modes with slight modifications. The optimization is performed using genetic algorithms. The effects of polarization deficiencies and antenna total embedded efficiency on the MIMO performance of the antenna are further studied. A prototype of the antenna has been fabricated and the design has been verified by measurements against the simulations.Comment: 7 pages, 15 figures, 15 reference

    Novel antenna configurations for wireless broadband vehicular communications

    Get PDF

    Optical coherent phase diversity systems

    Get PDF

    Analysis of the Performance Enhancement of MIMO Systems Employing Circular Polarization

    Get PDF
    The advantages of adopting circular polarization in multiple-input-multiple-output (MIMO) systems are illustrated for both line-of-sight (LOS) and multipath propagation. More in detail, an analysis of the MIMO performance attainable by employing orthogonal circularly polarized (CP) radiators with respect to orthogonal linearly polarized (LP) ones, has been addressed. At first, an accurate analysis is presented aimed at the evaluation of the channel matrix by comprehensively including also the effects of the antenna in LOS condition. In particular, the channel matrix has been calculated as a function of the antenna parameters and orientation, demonstrating that CP radiators are capable of obtaining better average values of the matrix eigenvalues with respect to LP ones. The analysis is therefore completed by evaluating the characteristics of a CP MIMO system operating in indoor environment representing this latter a more challenging condition where multipath propagation occurs. In this latter case, some meaningful numerical experiments have been performed by using a reliable ray-tracing solver, followed by a measurements campaign conducted in a real environment for validation purposes. Measurements, which are in good agreement with simulations, confirm the benefits of adopting circular polarization in MIMO systems with respect to LP

    Mitigation of modulation instability in Brillouin distributed fiber sensors by using orthogonal polarization pulses

    Get PDF
    A technique based on the use of orthogonally-polarized pulses is proposed to mitigate the detrimental impact of modulation instability on Brillouin distributed fiber sensors. While the theoretical underpinnings of the method are described by introducing a detailed model for the vector modulation instability, the technique is experimentally validated in a 25-km sensing link. Numerical and experimental results demonstrate that the use of orthogonally-polarized pulses not only mitigates the impact of modulation instability, but also the four-wave mixing occurring in systems using pumps with parallel polarization; thus, providing an important sensing range enhancement with a reduced pump depletion.J. Urricelqui, M. Sagues and A. Loayssa acknowledge the support from the Spanish Ministerio de Economia y Competitividad through the project TEC2013-47264-C2-2-R, FEDER funds and Universidad Pública de Navarra

    Mutual coupling in MIMO systems

    Get PDF
    The drive towards greater efficiency in communications systems has led to the birth of many new technologies and considerable improvements in existing systems over the last 20 years. These developments have been underpinned by increasing demands for higher data speeds, capacity and reliability by end users on a global level. Wireless communications systems have witnessed rapid transformations with this regard. Numerous enhancements in data capacities have been the hallmark of these systems. One of the principal components in achieving improved performance in wireless systems is the antenna system. Single Input Single Output (SISO) antenna topologies have traditionally been employed in wireless links. As the demand for higher data rates have persisted various limitations have arisen. Multiple Input Multiple Output (MIMO) antenna topologies have provided promise of the desired system capacity and reliability. Since MIMO systems employ two or more antenna pairs simultaneously, the effects of mutual coupling become a significant consideration in the quest to achieve high system performance. Therefore a clear understanding of mutual coupling effects with varying conditions in necessary for practical purposes. A lot of work has already been done on this subject. This thesis shall seek to substantiate some fundamental evidence on the relationship between mutual coupling effects and antenna element separation. The procedure shall involve the use of proven computer aided design software to achieve this purpose. Microstrip antennas (used interchangeably with patch antennas), widely known for their efficacy in wireless communications applications will be used for the tests. Specifically the more common linearly polarized rectangular microstrip antenna shall be utilised

    Mutual coupling in MIMO systems

    Get PDF
    The drive towards greater efficiency in communications systems has led to the birth of many new technologies and considerable improvements in existing systems over the last 20 years. These developments have been underpinned by increasing demands for higher data speeds, capacity and reliability by end users on a global level. Wireless communications systems have witnessed rapid transformations with this regard. Numerous enhancements in data capacities have been the hallmark of these systems. One of the principal components in achieving improved performance in wireless systems is the antenna system. Single Input Single Output (SISO) antenna topologies have traditionally been employed in wireless links. As the demand for higher data rates have persisted various limitations have arisen. Multiple Input Multiple Output (MIMO) antenna topologies have provided promise of the desired system capacity and reliability. Since MIMO systems employ two or more antenna pairs simultaneously, the effects of mutual coupling become a significant consideration in the quest to achieve high system performance. Therefore a clear understanding of mutual coupling effects with varying conditions in necessary for practical purposes. A lot of work has already been done on this subject. This thesis shall seek to substantiate some fundamental evidence on the relationship between mutual coupling effects and antenna element separation. The procedure shall involve the use of proven computer aided design software to achieve this purpose. Microstrip antennas (used interchangeably with patch antennas), widely known for their efficacy in wireless communications applications will be used for the tests. Specifically the more common linearly polarized rectangular microstrip antenna shall be utilised
    • …
    corecore